首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
The material behaviour of dominant elastic‐plastic, spherical γ‐Al2O3‐granules at compression until primary breakage has been experimentally studied. The influence of particle size and moisture content on the compression behaviour was also investigated. The mechanical properties of the granules can be determined using the recorded force‐displacement curves. Additionally, the specific fracture energy distribution and the distribution of the equivalent impact velocity at fracture can be derived from the force‐displacement curves.  相似文献   

2.
This paper herein studies subcritical crack growth (SCG) behavior of a perovskite‐structured Ba0.5Sr0.5Co0.8Fe0.2O3?δ (BSCF) as an oxygen transport membrane material. The SCG behavior of BSCF is evaluated by a constant load method and constant stress rate method at room temperature (RT) and 800°C in air, respectively. The low crack velocity measurements are carried out by ring‐on‐ring bending tests while the high crack velocity measurements by compact tension tests. The stress rates vary approximately from 0.1012 to 101.2 MPa/min. The fracture stress increases with increasing stress rate at 800°C. The SCG parameter, n, of BSCF is determined to be 24.32 and 13.83 at RT and 800°C in air, respectively. This indicates that BSCF is more susceptible to SCG at 800°C. The strength‐probability‐time (SPT) diagram is constructed for design proposes. The stress for a lifetime of 40 years should not exceed 27.21 MPa at RT or 4.53 MPa at 800°C to assure a failure probability below 1%.  相似文献   

3.
In this study, a new chalcohalide glass system, Ga2S3‐Sb2S3‐CsI, is reported. It has a glass‐forming domain composed of ~0‐35 mol% Ga2S3, ~15‐95 mol% Sb2S3, and ~0‐55 mol% CsI. The glasses have a wide transparent window of ~0.7‐13.5 μm, high third‐order nonlinear refractive indices of ~1.7‐8.7×10?14 cm2/W @ 1.55 μm, and relatively short zero group‐velocity‐dispersion wavelengths of 3.8‐5.15 μm. The glasses can dissolve more than 2 mol% active ions (e.g., Dy3+), and the doped glasses show intense emissions in the mid‐infrared. These superior properties demonstrate their good potentials for mid‐infrared applications such as thermal imaging, nonlinear photonics and lasers.  相似文献   

4.
5.
Iron oxide supported oxygen carrier (OC) is regarded to a promising candidate for chemical looping combustion (CLC). However, phase separation between Fe2O3 and supports often occurs resulted from the severe sintering of supports during calcination, which leads to the sintering and breakage of Fe2O3 thus the decrease of redox reactivity. In this article, La‐promoted Fe2O3/α‐Al2O3 were used as OCs for CLC of CH4 and for the first time found that the OC with the addition of 18 wt % La exhibited outstanding reactivity and redox stability during 50 cycles of CLC of CH4. Such a superior performance originated from the formation of LaAl12O19 hexaaluminate (La‐HA) phase with not only small particle size but also excellent thermal stability at CLC conditions, which worked as a binder to prevent the phase separation thereby the sintering and breakage of active species α‐Fe2O3 were avoided during reaction. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2827–2838, 2017  相似文献   

6.
The model enzyme β‐galactosidase was entrapped in chitosan gel beads and tested for hydrolytic activity and its potential for application in a packed‐bed reactor. The chitosan beads had an enzyme entrapment efficiency of 59% and retained 56% of the enzyme activity of the free enzyme. The Michaelis constant (Km) was 0.0086 and 0.011 μmol/mL for the free and immobilized enzymes, respectively. The maximum velocity of the reaction (Vmax) was 285.7 and 55.25 μmol mL?1 min?1 for the free and immobilized enzymes, respectively. In pH stability tests, the immobilized enzyme exhibited a greater range of pH stability and shifted to include a more acidic pH optimum, compared to that of the free enzyme. A 2.54 × 16.51‐cm tubular reactor was constructed to hold 300 mL of chitosan‐immobilized enzyme. A full‐factorial test design was implemented to test the effect of substrate flow (20 and 100 mL/min), concentration (0.0015 and 0.003M), and repeated use of the test bed on efficiency of the system. Parameters were analyzed using repeated‐measures analysis of variance. Flow (p < 0.05) and concentration (p < 0.05) significantly affected substrate conversion, as did the interaction progressing from Run 1 to Run 2 on a bed (p < 0.05). Reactor stability tests indicated that the packed‐bed reactor continued to convert substrate for more than 12 h with a minimal reduction in conversion efficiency. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1294–1299, 2004  相似文献   

7.
2‐Mercapto‐5‐methylpyridine‐N‐oxide (MMPNO) and its sodium salt (NaMMPNO) were synthesized. The reaction of the latter with Fe3+ generates Fe(MMPNO)3 chelate. The thermolysis of this chelate at 350 °C yielded highly pure reddish‐brown γ‐Fe2O3 nanocrystallites with an average particle size of 6.2 nm, a particle size range of 4.2 to 14.8 nm, and a specific surface area of 51.5 m2g–1. The thermolysis process was optimized using the 22 fractional design. Quantitative tests and characterization of products were carried out by UV‐vis spectroscopy, XRD, LLS, SEM, TGA, BET, TEM, FT‐IR, elemental microanalysis, and classical analytical measurements.  相似文献   

8.
Two phosphorus‐containing acrylates of 1‐oxo‐2,6,7‐trioxa‐1‐phorsphabicyclo[2,2,2]oct‐4‐yl methyl acrylate and (10‐oxo‐10‐hydro‐9‐oxa‐10λ5‐phosphaphenanthrene‐10‐yl) methyl acrylate were free‐radical‐copolymerized with styrene (St). The r1 reactivity ratio values (related to the novel acrylates) were 0.342 and 0.225, respectively, and the r2 reactivity ratio values (related to St) were 0.432 and 0.503, respectively. The thermal stability of the copolymers was tested by thermogravimetric analysis (TGA) in N2 or air, and the ignitability was tested by measurements of UL‐94 vertical combustion tests and the limiting oxygen index. The results of TGA and combustion tests indicated that the effect of flame retardancy was determined by the nature of the phosphorus‐containing substituent. Compared with the 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide based group, the 1‐oxo‐2,6,7‐trioxa‐1‐phorsphabicyclo[2,2,2]oct‐4‐yl methol based group could enhance the ability of char formation with an antidripping effect. It is concluded that phosphorus‐containing acrylates are potential flame‐retarding monomers for styrenic polymers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Triazidotrinitro benzene, 1,3,5‐(N3)3‐2,4,6‐(NO2)3C6 ( 1 ) was synthesized by nitration of triazidodinitro benzene, 1,3,5‐(N3)3‐2,4‐(NO2)2C6H with either a mixture of fuming nitric and concentrated sulfuric acid (HNO3/H2SO4) or with N2O5. Crystals were obtained by the slow evaporation of an acetone/acetic acid mixture at room temperature over a period of 2 weeks and characterized by single crystal X‐ray diffraction: monoclinic, P 21/c (no. 14), a=0.54256(4), b=1.8552(1), c=1.2129(1) nm, β=94.91(1)°, V=1.2163(2) nm3, Z=4, ϱ=1.836 g⋅cm−3, Rall =0.069. Triazidotrinitro benzene has a remarkably high density (1.84 g⋅cm−3). The standard heat of formation of compound 1 was computed at B3LYP/6‐31G(d, p) level of theory to be ΔH°f=765.8 kJ⋅mol−1 which translates to 2278.0 kJ⋅kg−1. The expected detonation properties of compound 1 were calculated using the semi‐empirical equations suggested by Kamlet and Jacobs: detonation pressure, P=18.4 GPa and detonation velocity, D=8100 m⋅s−1.  相似文献   

10.
A series of bioisosteric N1‐ and N2‐substituted 5‐(piperidin‐4‐yl)‐3‐hydroxypyrazole analogues of the partial GABAAR agonists 4‐PIOL and 4‐PHP have been designed, synthesized, and characterized pharmacologically. The unsubstituted 3‐hydroxypyrazole analogue of 4‐PIOL ( 2 a ; IC50~300 μM ) is a weak antagonist at the α1β2γ2 GABAAR, whereas substituting the N1‐ or N2‐position with alkyl or aryl substituents resulted in antagonists with binding affinities in the high nanomolar to low micromolar range at native rat GABAARs. Docking studies using a α1β2γ2 GABAAR homology model along with the obtained SAR indicate that the N1‐substituted analogues of 4‐PIOL and 4‐PHP, 2 a – k , and previously reported 3‐substituted 4‐PHP analogues share a common binding mode to the orthosteric binding site in the receptor. Interestingly, the core scaffold of the N2‐substituted analogues of 4‐PIOL and 4‐PHP, 3 b – k , are suggested to flip 180° thereby adapting to the binding pocket and addressing a cavity situated above the core scaffold.  相似文献   

11.
A novel method has been developed to modify the natural polymer chitosan. The process utilizes a monomer prepared by employing a Morita–Baylis–Hillman (MBH) reaction. Specifically, the vinyl monomer 2‐[hydroxy(pyridin‐3‐yl)methyl]acrylonitrile (HPA) was synthesized using a high‐yielding MBH reaction of acrylonitrile with pyridine‐3‐carboxaldehyde in the presence of 1,4‐diazabicyclo[2.2.2]octane. Conversion of HPA to 2‐cyano‐1‐(pyridin‐3‐yl)allyl acrylate (CPA) was then carried out by reaction of acryloyl chloride. The highly functionalized monomer CPA was grafted onto chitosan through a reaction in 2% acetic acid containing a persulfate and a sulfite (K2S2O8/Na2SO3) as redox promoter. An optimal grafting percentage of 123% is obtained when the grafting process is conducted at 60 °C for 4 h employing a 1:0.5 ratio of K2S2O8 and Na2SO3 at a concentration of 2.5 × 10?3 mol L?1. Chitosan‐graft‐poly[2‐cyano‐1‐(pyridin‐3‐yl)allyl acrylate] graft copolymers, having various grafting percentages, were characterized using Fourier transform infrared, 1H NMR and 13C NMR spectroscopies, X‐ray diffraction, thermogravimetric analysis and scanning electron microscopy. Finally, the results of studies probing the antimicrobial activities of the polymers against selected microorganisms show that the graft copolymers display higher growth inhibition activities against bacteria and fungi than does chitosan. © 2014 Society of Chemical Industry  相似文献   

12.
A series of poly(R‐3‐hydroxybutyrate)/poly(ε‐caprolactone)/1,6‐hexamethylene diisocyanate‐segmented poly(ester‐urethanes), having different compositions and different block lengths, were synthesized by one‐step solution polymerization. The molecular weight of poly(R‐3‐hydroxybutyrate)‐diol, PHB‐diol, hard segments was in the range of 2100–4400 and poly(ε‐caprolactone)‐diol, PCL‐diol, soft segments in the range of 1080–5800. The materials obtained were investigated by using differential scanning calorimetry, wide angle X‐ray diffraction and mechanical measurements. All poly(ester‐urethanes) investigated were semicrystalline with Tm varying within 126–148°C. DSC results showed that Tg are shifted to higher temperature with increasing content of PHB hard segments and decreasing molecular weight of PCL soft segments. This indicates partial compatibility of the two phases. In poly(ester‐urethanes) made from PCL soft segments of molecular weight (Mn ≥ 2200), a PCL crystalline phase, in addition to the PHB crystalline phase, was observed. As for the mechanical tensile properties of poly(ester‐urethane) cast films, it was found that the ultimate strength and the elongation at the breakpoint decrease with increasing PHB hard segment content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 703–718, 2002  相似文献   

13.
β‐Polypropylene composites containing calcium carbonate treated by titanate coupling agent (T‐CaCO3) and maleic anhydride grafted PP (PP‐g‐MAH) were prepared by melt compounding. The crystallization, morphology and mechanical properties of the composites were investigated by means of differential scanning calorimetry, wide‐angle X‐ray diffraction, polarized light microscopy, scanning electron microscopy and mechanical tests. It is found that both T‐CaCO3 and NT‐C are able to induce the formation of β‐phase, and NT‐C greatly increases the β content and decreases the spherulitic size of PP. PP‐g‐MAH facilitates the formation of β‐form PP and improves the compatibility between T‐CaCO3 and PP. Izod notched impact strength of β‐PP/T‐CaCO3 composite is higher than that of PP/T‐CaCO3 composite, indicating the synergistic toughening effect of T‐CaCO3 and β‐PP. Incorporation of PP‐g‐MAH into β‐PP/T‐CaCO3 composite further increases the content of β‐crystal PP and improves the impact strength and tensile strength when T‐CaCO3 concentration is below 5 wt%. The nonisothermal crystallization kinetics of β‐PP composites is well described by Jeziorny's and Mo's methods. It is found that NT‐C and T‐CaCO3 accelerate the crystallization rate of PP but the influence of PP‐g‐MAH on crystallization rate of β‐PP composite is marginal. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
The present paper describes the synthesis and evaluation of surface properties of a novel series of anionic surfactant, namely sodium 3‐(3‐alkyloxy‐3‐oxopropoxy)‐3‐oxopropane‐1‐sulfonate with varying alkyl chain length (C8–C16). Synthesis involves initial formation of the 3‐alkyloxy‐3‐oxopropyl acrylate along with fatty acrylate during the direct esterification of fatty alcohol with acrylic acid in the presence of 0.5 % NaHSO4 at 110 °C followed by sulfonation of the terminal double bond of the 3‐alkyloxy‐3‐oxopropyl acrylate. Synthesized compounds were evaluated for surface and thermodynamic properties such as critical micelle concentration (CMC), surface tension at CMC (γcmc), efficiency of surface adsorption (pC20), surface excess (Γmax), minimum area per molecule at the air–water interface (Amin), free energy of adsorption (?G°ads), free energy of micellization (?G°mic), wetting time, emulsifying properties, foaming power and calcium tolerance. Effect of chain length on CMC follows the classic trend, i.e. decrease in CMC with the increase in alkyl chain length. High pC20 (>3) value indicates higher hydrophobic character of the surfactant. These surfactants showed very poor wetting time and calcium tolerance, but exhibited good emulsion stability and excellent foamability. Foaming power and foam stability of C14‐sulfonate were found to be the best among the studied compounds. Foam stability of C14‐sulfonate was also studied at different concentrations over time and excellent foam stability was obtained at a concentration of 0.075 %. Thus this novel class of surfactant may find applications as foam boosters in combination with other suitable surfactants.  相似文献   

15.
The formation of 4‐alkoxy‐2(5H)‐furanones was achieved via tandem alkoxylation/lactonization of γ‐hydroxy‐α,β‐acetylenic esters catalyzed by 2 mol% of [2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidine]gold bis(trifluoromethanesulfonyl)imidate [Au(IPr)(NTf2)]. The economic and simple procedure was applied to a series of various secondary propargylic alcohols allowing for yields of desired product of up to 95%. In addition, tertiary propargylic alcohols bearing mostly cyclic substituents were converted into the corresponding spiro derivatives. Both primary and secondary alcohols reacted with propargylic alcohols at moderate temperatures (65–80 °C) in either neat reactions or using 1,2‐dichloroethane as a reaction medium allowing for yields of 23–95%. In contrast to [Au(IPr)(NTf2)], reactions with cationic complexes such as [2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidine](acetonitrile)gold tetrafluoroborate [Au(IPr)(CH3CN)][BF4] or (μ‐hydroxy)bis{[2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidine]gold} tetrafluoroborate or bis(trifluoromethanesulfonyl)imidate – [{Au(IPr)}2(μ‐OH)][X] (X=BF4, NTf2) – mostly stop after the alkoxylation. Analysis of the intermediate proved the exclusive formation of the E‐isomer which allows for the subsequent lactonization.  相似文献   

16.
Mannopeptimycin, a potent drug lead, has superior activity against difficult‐to‐treat multidrug‐resistant Gram‐positive pathogens such as methicillin‐resistant Staphylococcus aureus (MRSA). (2S,3S)‐β‐Methylphenylalanine is a residue in the cyclic hexapeptide core of mannopeptimycin, but the synthesis of this residue is far from clear. We report here on the reaction order and the stereochemical course of reaction in the formation of (2S,3S)‐β‐methylphenylalanine. The reaction is executed by the enzymes MppJ and TyrB, an S‐adenosyl methionine (SAM)‐dependent methyltransferase and an (S)‐aromatic‐amino‐acid aminotransferase, respectively. Phenylpyruvic acid is methylated by MppJ at its benzylic position at the expense of one equivalent of SAM. The resulting β‐methyl phenylpyruvic acid is then converted to (2S,3S)‐β‐methylphenylalanine by TyrB. MppJ was further determined to be regioselective and stereoselective in its catalysis of the formation of (3S)‐β‐methylphenylpyruvic acid. The binding constant (KD) of MppJ versus SAM is 26 μM . The kinetic constants with respect to kcat Ppy and KM Ppy, and kcat SAM and KM SAM are 0.8 s?1 and 2.5 mM , and 8.15 s?1 and 0.014 mM , respectively. These results suggest SAM has higher binding affinity for MppJ than Ppy, and the C? C bond formation in βmPpy might be the rate‐limiting step, as opposed to the C? S bond breakage in SAM.  相似文献   

17.
A new process through the coupling of maleic anhydride hydrogenation and cyclohexanol dehydrogenation has been studied for the simultaneous synthesis of γ‐butyrolactone and cyclohexanone. The possibility of the coupling process has been investigated thermodynamically. The separated hydrogenation of maleic anhydride, the dehydrogenation of cyclohexanol, and the coupling process over the same Cu‐Zn‐Al catalyst have been carried out in a fixed‐bed reactor. Compared to conventional processes, the coupling process has several advantages, e.g., improved γ‐butyrolactone and cyclohexanone yields, good energy efficiency, and optimal hydrogen utilization. The effects of reaction temperature, n(H2)/n (reactants) and liquid hourly space velocity on the coupling process are investigated. One thousand hours of stability testing shows that the Cu‐based catalyst has relatively high activity and good stability in the coupling process.  相似文献   

18.
The reaction of the Cu(II) bis N,O‐chelate‐complexes of L‐2,4‐diaminobutyric acid, L‐ornithine and L‐lysine {Cu[H2N–CH(COO)(CH2)nNH3]2}2+(Cl)2 (n = 2–4) with terephthaloyl dichloride or isophthaloyl dichloride gives the polymeric complexes {‐OC–C6H4–CO–NH–(CH2)n–CH(nh2)(COO)Cu(OOC)(NH2)CH–CH2)n–NH‐}x 1 – 5 . From these the metal can be removed by precipitation of Cu(II) with H2S. The liberated ω,ω′‐N,N′‐diterephthaloyl (or iso‐phthaloyl)‐diaminoacids 6 – 10 react with [Ru(cymene)Cl2]2, [Ru(C6Me6)Cl2]2, [Cp*RhCl2]2 or [Cp*IrCl2]2 to the ligand bridged bis‐amino acidate complexes [Ln(Cl)M–(OOC)(NH2)CH–(CH2)nNH–CO]2–C6H4 11 – 14 .  相似文献   

19.
Competitive glycosidase inhibitors are generally sugar mimics that are costly and tedious to obtain because they require challenging and elongated chemical synthesis, which must be stereo‐ and regiocontrolled. Here, we show that readily accessible achiral (E)‐1‐phenyl‐3‐(4‐strylphenyl)ureas are potent competitive α‐glucosidase inhibitors. A systematic synthesis study shows that the 1‐phenyl moiety on the urea is critical for ensuring competitive inhibition, and substituents on both terminal phenyl groups contribute to inhibition potency. The most potent inhibitor, compound 12 (IC50=8.4 μM , Ki=3.2 μM ), manifested a simple slow‐binding inhibition profile for α‐glucosidase with the kinetic parameters k3=0.005256 μM ?1 min?1, k4=0.003024 min?1, and ${K{{{\rm app}\hfill \atop {\rm i}\hfill}}}$ =0.5753 μM .  相似文献   

20.
γ‐Fe2O3–high‐density polyethylene (HDPE) composite films are prepared by a gel‐casting technique. To understand the effect of additives, rice husk ash and thiourea are made to disperse in the HDPE matrix to obtain the composite films with additives. The as‐prepared γ‐Fe2O3–HDPE composite films with their additives are subjected to characterization and study through X‐ray diffraction, thermal, scanning electron microscopy, and dielectric measurements. The results are qualitatively treated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1527–1533, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号