共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic relationships among body condition score,body weight,milk yield,and fertility in dairy cows 总被引:2,自引:0,他引:2
Berry DP Buckley F Dillon P Evans RD Rath M Veerkamp RF 《Journal of dairy science》2003,86(6):2193-2204
Genetic (co)variances between body condition score (BCS), body weight (BW), milk production, and fertility-related traits were estimated. The data analyzed included 8591 multiparous Holstein-Friesian cows with records for BCS, BW, milk production, and/or fertility from 78 seasonal calving grass-based farms throughout southern Ireland. Of the cows included in the analysis, 4402 had repeated records across the 2 yr of the study. Genetic correlations between level of BCS at different stages of lactation and total lactation milk production were negative (-0.51 to -0.14). Genetic correlations between BW at different stages of lactation and total lactation milk production were all close to zero but became positive (0.01 to 0.39) after adjusting BW for differences in BCS. Body condition score at different stages of lactation correlated favorably with improved fertility; genetic correlations between BCS and pregnant 63 d after the start of breeding season ranged from 0.29 to 0.42. Both BW at different stages of lactation and milk production tended to exhibit negative genetic correlations with pregnant to first service and pregnant 63 d after the start of the breeding season and positive genetic correlations with number of services and the interval from first service to conception. Selection indexes investigated illustrate the possibility of continued selection for increased milk production without any deleterious effects on fertility or average BCS, albeit, genetic merit for milk production would increase at a slower rate. 相似文献
2.
In this study, maternal effects were described as age of dam at first and second calving, first-lactation body condition score (BCS) of the dam during gestation, and milk yield of the dam. The impact of these effects on first-lactation daughter BCS, fertility, and test-day milk yield was assessed. The effect of milk yield of dam on daughter 305-d yield in the latter's first 3 lactations was also investigated. The proportion of total phenotypic variance in daughter traits accounted for by maternal effects was calculated. Dams calving early for the first time (18 to 23 mo of age) had daughters that produced 4.5% more first-lactation daily milk, had 7% higher BCS, and had their first service 3 d earlier than cows whose dams calved late (30 to 36 mo). However, daughters of dams that calved early had difficulties conceiving as they needed 7% more inseminations and had a 7.5% higher return rate. Cows from second calvings of relatively young (36 to 41 mo) dams produced 6% more first-lactation daily milk, had 2% higher BCS, and showed a significantly better fertility profile than cows whose dams calved at a late age (47 to 55 mo). High maternal BCS during gestation had a favorable effect on daughter BCS, nonreturn rate, and number of inseminations per conception. However, it was also associated with a small decrease in daughter daily milk yield. Changes in dam BCS during gestation did not affect daughter performance significantly. Maternal effects of milk yield of the dam, expressed as her permanent environment during lactation, adversely affected daughter 305-d milk, fat, and protein yield. However, although the effect was significant, it was practically negligible (<0.3% of the mean). Finally, overall maternal effects accounted for a significant proportion of the total phenotypic variance of calving interval (1.4 ± 0.6%) and nonreturn rate (1.1 ± 0.5%). 相似文献
3.
Genetic relationships between body condition score and reproduction traits in Canadian Holstein and Ayrshire first-parity cows 总被引:1,自引:0,他引:1
The objective of this study was to investigate the genetic relationship between body condition score (BCS) and reproduction traits for first-parity Canadian Ayrshire and Holstein cows. Body condition scores were collected by field staff several times over the lactation in herds from Québec, and reproduction records (including both fertility and calving traits) were extracted from the official database used for the Canadian genetic evaluation of those herds. For each breed, six 2-trait animal models were run; they included random regressions that allowed the estimation of genetic correlations between BCS over the lactation and reproduction traits that are measured as a single lactation record. Analyses were undertaken on data from 108 Ayrshire herds and 342 Holstein herds. Average daily heritabilities of BCS were close to 0.13 for both breeds; these relatively low estimates might be explained by the high variability among herds and BCS evaluators. Genetic correlations between BCS and interval fertility traits (days from calving to first service, days from first service to conception, and days open) were negative and ranged between −0.77 and −0.58 for Ayrshire and between −0.31 and −0.03 for Holstein. Genetic correlations between BCS and 56-d nonreturn rate at first insemination were positive and moderate. The trends of these genetic correlations over the lactation suggest that a genetically low BCS in early lactation would increase the number of days that the primiparous cow was not pregnant and would decrease the chances of the primiparous cow to conceive at first service. Genetic correlations between BCS and calving traits were generally the strongest at calving and decreased with increasing days in milk. The correlation between BCS at calving and maternal calving ease was 0.21 for Holstein and 0.31 for Ayrshire and emphasized the relationship between fat cows around calving and dystocia. Genetic correlations between calving traits and BCS during the subsequent lactation were moderate and favorable, indicating that primiparous cows with a genetically high BCS over the lactation would have a greater chance of producing a calf that survived (maternal calf survival) and would transmit the genes that allowed the calf to be born more easily (maternal calving ease) and to survive (direct calving ease). 相似文献
4.
P.D. Carvalho A.H. Souza M.C. Amundson K.S. Hackbart M.J. Fuenzalida M.M. Herlihy H. Ayres A.R. Dresch L.M. Vieira J.N. Guenther R.R. Grummer P.M. Fricke R.D. Shaver M.C. Wiltbank 《Journal of dairy science》2014
The relationship between energy status and fertility in dairy cattle was retrospectively analyzed by comparing fertility with body condition score (BCS) near artificial insemination (AI; experiment 1), early postpartum changes in BCS (experiment 2), and postpartum changes in body weight (BW; experiment 3). To reduce the effect of cyclicity status, all cows were synchronized with Double-Ovsynch protocol before timed AI. In experiment 1, BCS of lactating dairy cows (n = 1,103) was evaluated near AI. Most cows (93%) were cycling at initiation of the breeding Ovsynch protocol (first GnRH injection). A lower percentage pregnant to AI (P/AI) was found in cows with lower (≤2.50) versus higher (≥2.75) BCS (40.4 vs. 49.2%). In experiment 2, lactating dairy cows on 2 commercial dairies (n = 1,887) were divided by BCS change from calving until the third week postpartum. Overall, P/AI at 70-d pregnancy diagnosis differed dramatically by BCS change and was least for cows that lost BCS, intermediate for cows that maintained BCS, and greatest for cows that gained BCS [22.8% (180/789), 36.0% (243/675), and 78.3% (331/423), respectively]. Surprisingly, a difference existed between farms with BCS change dramatically affecting P/AI on one farm and no effect on the other farm. In experiment 3, lactating dairy cows (n = 71) had BW measured weekly from the first to ninth week postpartum and then had superovulation induced using a modified Double-Ovsynch protocol. Cows were divided into quartiles (Q) by percentage of BW change (Q1 = least change; Q4 = most change) from calving until the third week postpartum. No effect was detected of quartile on number of ovulations, total embryos collected, or percentage of oocytes that were fertilized; however, the percentage of fertilized oocytes that were transferable embryos was greater for cows in Q1, Q2, and Q3 than Q4 (83.8, 75.2, 82.6, and 53.2%, respectively). In addition, percentage of degenerated embryos was least for cows in Q1, Q2, and Q3 and greatest for Q4 (9.6, 14.5, 12.6, and 35.2% respectively). In conclusion, for cows synchronized with a Double-Ovsynch protocol, an effect of low BCS (≤2.50) near AI on fertility was detected, but change in BCS during the first 3 wk postpartum had a more profound effect on P/AI to first timed AI. This effect could be partially explained by the reduction in embryo quality and increase in degenerate embryos by d 7 after AI in cows that lost more BW from the first to third week postpartum. 相似文献
5.
Body condition score (BCS) data were collected on 169,661 first-parity cows from herds participating in progeny testing schemes and linear type assessment. Genetic and residual variances for BCS estimated across time using a quadratic random regression model were found to be largest at the start of lactation. Heritability estimates ranged from 0.32 to 0.23 from d 1 to 200 of lactation, with a mean of 0.26. Genetic correlations between BCS and other traits were estimated using 2 approaches: 1) a multivariate analysis that included BCS and live weight, both adjusted for stage of lactation; 270-d cumulative yields of milk, fat, and protein; average somatic cell score; and 2 measures of fertility; and 2) a bivariate random regression analysis in which BCS was considered to be a longitudinal trait across time, with the same measurements as in approach 1 for all other traits. Genetic correlations of BCS with the 2 fertility traits were 0.43 and 0.50 using the multivariate analysis; the corresponding random regression estimates between BCS as a longitudinal trait across time and 2 measures of fertility were 0.35 to 0.44 and 0.40 to 0.49, and tended to increase with stage of lactation. Genetic correlations estimated using the random regression model fluctuated around the multivariate estimates for live weight and somatic cell score, which were 0.50 and −0.12, respectively. Genetic correlations estimated using the multivariate analysis of BCS with fat and protein yields were close to zero. With the random regression model, genetic correlations between BCS and fat and protein yields were positive at d 1 of lactation (0.16 and 0.08, respectively) and were negative by d 200 of lactation (−0.25 and −0.20, respectively). In pastoral production systems, such as those typical in New Zealand, there appears to be an advantage in the total lactation yields of fat and protein for cows of higher BCS in early lactation, which is likely to be because these cows have body reserves that are available to be mobilized in later lactation, when feed resources are sometimes limited. 相似文献
6.
Genetic parameters for level and change of body condition score and body weight in dairy cows 总被引:1,自引:0,他引:1
Berry DP Buckley F Dillon P Evans RD Rath M Veerkamp RF 《Journal of dairy science》2002,85(8):2030-2039
(Co)variance components for body condition score (BCS), body weight (BW), BCS change, BW change, and milk yield traits were estimated. The data analyzed included 6646 multiparous Holstein-Friesian cows with records for BCS, BW, and(or) milk yield at different stages of lactation from 74 dairy herds throughout Southern Ireland. Heritability estimates for BCS ranged from 0.27 to 0.37, while those for BCS change ranged from 0.02 to 0.10. Heritability estimates for BW records varied from 0.39 to 0.50, while heritabilities for BW change were similar to those observed for BCS change (0.03 to 0.09). The genetic correlations between BCS and BW at the same days in milk deviated little from 0.50, and the genetic correlations between BCS change and BW change over the same period ranged from 0.42 to 0.55. BCS and BW directly postpartum were both phenotypically and genetically negatively correlated with both BW change and BCS change in early lactation. The genetic correlations between BCS and milk yield were negative. The results of the present study show that animals that lose most BCS in early lactation tend to gain most BCS in late lactation, a trend also exhibited by BW. 相似文献
7.
Dal Zotto R De Marchi M Dalvit C Cassandro M Gallo L Carnier P Bittante G 《Journal of dairy science》2007,90(12):5737-5743
This study aimed to estimate genetic parameters for body condition score (BCS), calving interval (CI), somatic cell score (SCS), yield, and linear type traits for the Italian Brown Swiss cattle population. A total of 32,359 records of first-parity lactating cows were collected from 2002 to 2004 in 4,885 dairy herds. The pedigree file included 96,661 animals. Multiple-trait animal models were analyzed using REML to estimate (co)variance components without repeated observations on traits. The estimated heritability was 0.15 for BCS, 0.05 for CI, and 0.06 for SCS, and ranged from 0.09 to 0.14 for test-day yield traits and from 0.07 to 0.32 for linear type traits. The genetic correlations of CI with yield and most linear type traits were positive, whereas the correlation between CI and BCS was negative (−0.35). For type traits, BCS showed, in general, a moderately negative genetic correlation except for strength, pastern, and heel height. The genetic correlation of CI or BCS with SCS was moderately low but favorable (0.19 and −0.26, respectively). The estimated correlations indicated that selection for greater yield and type traits can exert unfavorable effects on the reproductive ability of cows. To counterbalance these effects and to carry out early prediction of breeding values of bulls for fertility, inclusion of BCS in the breeding program is advisable. 相似文献
8.
Berry DP Buckley F Dillon P Evans RD Rath M Veerkamp RF 《Journal of dairy science》2003,86(11):3704-3717
Genetic (co)variances between body condition score (BCS), body weight (BW), milk yield, and fertility were estimated using a random regression animal model extended to multivariate analysis. The data analyzed included 81,313 BCS observations, 91,937 BW observations, and 100,458 milk test-day yields from 8725 multiparous Holstein-Friesian cows. A cubic random regression was sufficient to model the changing genetic variances for BCS, BW, and milk across different days in milk. The genetic correlations between BCS and fertility changed little over the lactation; genetic correlations between BCS and interval to first service and between BCS and pregnancy rate to first service varied from -0.47 to -0.31, and from 0.15 to 0.38, respectively. This suggests that maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in midlactation when the genetic variance for BCS is largest. Selection for increased BW resulted in shorter intervals to first service, but more services and poorer pregnancy rates; genetic correlations between BW and pregnancy rate to first service varied from -0.52 to -0.45. Genetic selection for higher lactation milk yield alone through selection on increased milk yield in early lactation is likely to have a more deleterious effect on genetic merit for fertility than selection on higher milk yield in late lactation. 相似文献
9.
Multiparous Holstein cows (n = 337) on two commercial dairy farms were used to determine the effects of feeding a close-up diet for 21 (treatment S) or 60 d (treatment L). Milk yield was not affected by treatment; however, cows fed treatment S tended to have increased yields of fat, 3.5% fat-corrected milk, and protein during the first 5 mo of their subsequent lactation compared to treatment L. Cows fed treatment L gained more body condition score (BCS) during the dry period and had longer days to first service. As a secondary objective, relationships of BCS at dry off and subsequent performance were evaluated. Cows with initial BCS < or =3.0 (thinner) tended to produce more milk during early lactation than cows with initial BCS > or = 3.25 (fatter). A trend for an interaction of treatment and initial BCS existed for milk yield such that thinner cows fed treatment S produced the most milk and fatter cows fed treatment S produced the least amount of milk; cows fed treatment L regardless of BCS produced an intermediate amount of milk. Subsequent reproductive performance was similar among thinner and fatter cows. These data indicate that 2 group nutritional strategies for dry cows are preferred, and BCS at dry off should be considered when determining grouping and nutritional strategies for dry cows. Furthermore, moderately thin cows at dry off do not have impaired performance during their subsequent lactation compared to cows of greater BCS. 相似文献
10.
Body condition score (BCS) records of primiparous Holstein cows were analyzed both as a single measure per animal and as repeated measures per sire of cow. The former resulted in a single, average, genetic evaluation for each sire, and the latter resulted in separate genetic evaluations per day of lactation. Repeated measure analysis yielded genetic correlations of less than unity between days of lactation, suggesting that BCS may not be the same trait across lactation. Differences between daily genetic evaluations on d 10 or 30 and subsequent daily evaluations were used to assess BCS change at different stages of lactation. Genetic evaluations for BCS level or change were used to estimate genetic correlations between BCS measures and fertility traits in order to assess the capacity of BCS to predict fertility. Genetic correlation estimates with calving interval and non-return rate were consistently higher for daily BCS than single measure BCS evaluations, but results were not always statistically different. Genetic correlations between BCS change and fertility traits were not significantly different from zero. The product of the accuracy of BCS evaluations with their genetic correlation with the UK fertility index, comprising calving interval and non-return rate, was consistently higher for daily than for single BCS evaluations, by 28 to 53%. This product is associated with the conceptual correlated response in fertility from BCS selection and was highest for early (d 10 to 75) evaluations. 相似文献
11.
The aim of this study was to estimate genetic parameters for fertility traits and linear type traits in the Czech Holstein dairy cattle population. Phenotypic data regarding 12 linear type traits, measured in first lactation, and 3 fertility traits, measured in each of first and second lactation, were collected from 2005 to 2009 in the progeny testing program of the Czech-Moravian Breeders Corporation. The number of animals for each linear type trait was 59,467, except for locomotion, where 53,436 animals were recorded. The 3-generation pedigree file included 164,125 animals. (Co)variance components were estimated using AI-REML in a series of bivariate analyses, which were implemented via the DMU package. Fertility traits included days from calving to first service (CF1), days open (DO1), and days from first to last service (FL1) in first lactation, and days from calving to first service (CF2), days open (DO2), and days from first to last service (FL2) in second lactation. The number of animals with fertility data varied between traits and ranged from 18,915 to 58,686. All heritability estimates for reproduction traits were low, ranging from 0.02 to 0.04. Heritability estimates for linear type traits ranged from 0.03 for locomotion to 0.39 for stature. Estimated genetic correlations between fertility traits and linear type traits were generally neutral or positive, whereas genetic correlations between body condition score and CF1, DO1, FL1, CF2 and DO2 were mostly negative, with the greatest correlation between BCS and CF2 (−0.51). Genetic correlations with locomotion were greatest for CF1 and CF2 (−0.34 for both). Results of this study show that cows that are genetically extreme for angularity, stature, and body depth tend to perform poorly for fertility traits. At the same time, cows that are genetically predisposed for low body condition score or high locomotion score are generally inferior in fertility. 相似文献
12.
The objective of this study was to investigate the genetic relationship between body condition score (BCS) and calving traits (including calving ease and calf survival) for Ayrshire second-parity cows in Canada. The use of random regression models allowed assessment of the change of genetic correlation from 100 d before calving to 335 d after calving. Therefore, the influence of BCS in the dry period on subsequent calving could be studied. Body condition scores were collected by field staff several times over the lactation in 101 herds from Québec and calving records were extracted from the official database used for Canadian genetic evaluation of calving ease. Daily heritability of BCS increased from 0.07 on d 100 before calving to 0.25 at 335 d in milk. Genetic correlations between BCS at different stages ranged between 0.59 and 0.99 and indicated that genetic components for BCS did not change much over lactation. With the exception of the genetic correlation between BCS and direct calving ease, which was low and negative, genetic correlations between BCS and calving traits were positive and moderate to high. Correlations were the highest before calving and decreased toward the end of the ensuing lactation. The correlation between BCS 10 d before calving and maternal calving ease was 0.32 and emphasized the relationship between fat cows before calving with dystocia. Standards errors of the genetic correlations estimates were low. Genetic correlations between BCS and calf survival were moderate to high and favorable. This indicates that cows with a genetically high BCS across lactation would have a greater chance of producing a calf that survived (maternal calf survival) and that they would transmit genes that allow the calf to survive (direct calf survival). 相似文献
13.
The objectives of this research were to estimate genetic parameters for body condition score (BCS) and locomotion (LOC), and to assess their relationships with angularity (ANG), milk yield, fat and protein content, and fat to protein content ratio (F:P) in the Italian Holstein Friesian breed. The Italian Holstein Friesian Cattle Breeders Association collects type trait data once on all registered first lactation cows. Body condition score and LOC were introduced in the conformation scoring system in 2007 and 2009, respectively. Variance (and covariance) components among traits were estimated with a Bayesian approach via a Gibbs sampling algorithm and an animal model. Heritability estimates were 0.114 and 0.049 for BCS and LOC, respectively. The genetic correlation between BCS and LOC was weak (−0.084) and not different from zero; therefore, the traits seem to be genetically independent, but further investigation on possible departures from linearity of this relationship is needed. Angularity was strongly negatively correlated with BCS (−0.612), and strongly positively correlated with LOC (0.650). The genetic relationship of milk yield with BCS was moderately negative (−0.386), and was moderately positive (0.238) with LOC. These results indicate that high-producing cows tend to be thinner and tend to have better locomotion than low-producing cows. The genetic correlation of BCS with fat content (0.094) and F:P (−0.014) was very weak and not different from zero, and with protein content (0.173) was weak but different from zero. Locomotion was weakly correlated with fat content (0.071), protein content (0.028), and F:P (0.074), and correlations were not different from zero. Phenotypic correlations were generally weaker than their genetic counterparts, ranging from −0.241 (BCS with ANG) to 0.245 (LOC with ANG). Before including BCS and LOC in the selection index of the Italian Holstein breed, the correlations with other traits currently used to improve type and functionality of animals need to be investigated. 相似文献
14.
Lassen J Hansen M Sørensen MK Aamand GP Christensen LG Madsen P 《Journal of dairy science》2003,86(12):4123-4128
The aim of this study was to test whether genetic components for body condition score (BCS) changed during lactation in first-parity Danish Holsteins. Data were extracted from the national conformation scoring system and consisted of 28,948 records from 3894 herds. Cows were scored once during lactation for BCS on a scale from 1 to 9 with increments of 1. The majority of records were made from d 30 to 150 of lactation. Mean BCS was 4.28 +/- 0.98. Body condition score was lowest in wk 8 to 10 from calving. A multivariate sire model with BCS recordings in six lactation stages treated as different traits was used to analyze the data. In addition, a random regression sire model was used to evaluate the changes in BCS as continuous functions of lactation stage. Estimates of heritability from the multivariate approach ranged from 0.14 to 0.29, and the estimated genetic correlations between BCS at different lactation stages were all higher than 0.82. The random regression model was based on Legendre polynomials (LP) specified on days in milk at scoring. To evaluate the change in mean BCS during lactation, the fixed part of the model included a fifth-order LP on the effect of days in milk at scoring. The highest order of fit used for the sire effect was a third-order LP, but based on likelihood ratio tests this could be reduced to a 0 order, i.e., a model with only the intercept term for the sire effect. This means that the genetic variation is constant over the investigated part of the lactation. Therefore, BCS can be considered the same trait during lactation, and a simple sire model can be used for prediction of breeding values. 相似文献
15.
Lassen J Hansen M Sørensen MK Aamand GP Christensen LG Madsen P 《Journal of dairy science》2003,86(11):3730-3735
The aim of this study was to explore the possibilities of using body condition score (BCS) or dairy character (DC) as indicators of mastitis and diseases other than mastitis in first-parity Danish Holsteins. The dataset included 28,948 observations on conformation scores and 365,136 disease observations. The analysis was performed using a multitrait linear sire model. Heritability estimates for BCS and DC were moderate (0.25 and 0.22), and heritability estimates for mastitis and diseases other than mastitis were low (0.038 and 0.022). Between BCS and diseases other than mastitis, the genetic correlation was -0.22, whereas the genetic correlation was -0.16 between BCS and mastitis. The genetic correlation between DC and diseases other than mastitis was 0.43, and between DC and mastitis it was 0.27. The genetic correlation between BCS and DC was -0.61. Residual correlations were close to 0, except between BCS and DC (-0.37). Including DC as an indicator of diseases other than mastitis will increase the accuracy of the predicted breeding value for diseases, especially when the progeny group is small. Using BCS as an additional indicator of diseases did not increase the accuracy. Breeding for less DC will increase resistance to diseases. 相似文献
16.
Postpartum energy status is critically important to health and fertility, and it remains a major task to find suitable indicator traits for energy balance. Therefore, genetic parameters for daily energy balance (EB) and dry matter intake (DMI), weekly milk fat to protein ratio (FPR), and monthly body condition score (BCS) were estimated using random regression on data collected from 682 Holstein-Friesian primiparous cows recorded between lactation d 11 to 180. Average energy-corrected milk (ECM), EB, DMI, BCS, and FPR were 32.0 kg, 9.6 MJ of NEL, 20.3 kg, 2.95, and 1.12, respectively. Heritability estimates for EB, DMI, BCS, and FPR ranged from 0.03 to 0.13, 0.04 to 0.19, 0.34 to 0.59, and 0.20 to 0.54. Fat to protein ratio was a more valid measure for EB in early lactation than DMI, BCS, or single milk components. Correlations between FPR and EB were highest at the beginning of lactation [genetic correlation (rg) = −0.62 at days in milk (DIM) 15] and decreased toward zero. Dry matter intake was the trait most closely correlated with EB in mid lactation (rg = 0.73 at DIM 120 and 150). Energy balance in early lactation was negatively correlated to EB in mid lactation. The same applied to DMI. Genetic correlations between FPR across lactation stages were all positive; the lowest genetic correlation (0.55) was estimated between the beginning of lactation and early mid lactation. Hence, to improve EB at the beginning of lactation, EB and indicator traits need to be recorded in early lactation. We concluded that FPR is an adequate indicator for EB during the energy deficit phase. Genetic correlations of FPR with ECM, fat percentage, and protein percentage showed that a reduction of FPR in early lactation would have a slightly negative effect on ECM, whereas milk composition would change in a desirable manner. 相似文献
17.
The objective of the present study was to identify and quantify relationships among dairy cow body condition score (BCS) and body weight (BW) and production variables in pasture-based, seasonal-calving herds. More than 2,500 lactation records from 897 spring-calving Holstein-Friesian and Jersey dairy cows were used in the analyses. Six variables related to BCS and BW, including observations precalving, at calving, and nadir as well as days to nadir and change precalving and between calving and nadir were generated. An exponential function was fitted within lactation to milk and 4% fat-corrected milk (FCM) yield data to model lactation curves. The milk production variables investigated were the parameters of the fitted function as well as accumulated yield of milk and FCM at 60 and 270 days in milk and average milk composition. Mixed models were used to identify BCS and BW variables that significantly affected milk production. After adjusting for the fixed effect of year of calving, parity, and days dry, milk and FCM yields were nonlinearly associated with calving and nadir BCS, increasing at a declining rate up to BCS 6.0 to 6.5 (10-point scale; approximately 3.5 in the 5-point scale) and declining thereafter. However, there was very little increase in milk and FCM yields above a calving BCS of 5.0 (approximately 3.0 in the 5-point scale). Average milk fat content over 60 and 270 days in milk was positively correlated with increasing calving and nadir BCS. In comparison, milk protein percentage was not influenced by calving BCS but was positively associated with nadir BCS and negatively associated with BCS lost between calving and nadir. The effect of BW and changes in BW were similar to the effect of BCS, although the scale of the effect was breed-dependent. For example, milk and FCM yield increased linearly with increasing calving BCS, but the effect was greater in Holstein-Friesians compared with Jersey cows. The results are consistent with the literature and highlight the important role that BCS and BW loss has on milk production, irrespective of the system of farming. 相似文献
18.
P.-A. Morin Y. Chorfi J. Dubuc J.-P. Roy D. Santschi S. Dufour 《Journal of dairy science》2017,100(4):3086-3090
Body condition score (BCS) is strongly correlated with energy reserves. The ease, rapidity of scoring, and high intra- and inter-observer repeatability make it a widely used herd management tool in bovine practice and in scientific studies. Loss or gain of BCS, rather than a single BCS measurement, is frequently used to monitor energy balance in dairy cows. It is unknown if the difference between 2 BCS measures taken at different moments (ΔBCS) would demonstrate inter-observer agreement similar to that of a single BCS measurement. The objective of this study was to compare inter-observer agreement of BCS and ΔBCS in dairy cows when multiple observers perform data collection. An observational study was conducted between April and September 2015; 3 observers independently assessed BCS of 73 Holstein cows from 1 commercial dairy herd. Body condition score assessments of the animals were performed between 1 and 20 d in milk (early lactation; exam 1) and again between 41 and 60 d in milk (peak of milk production; exam 2). Quadratic weighted kappa (κw) was computed to quantify agreement between observers for single BCS measurements and ΔBCS. For single BCS measurements, κw of 0.79 (95% CI: 0.69, 0.85) and 0.84 (95% CI: 0.77, 0.89) were obtained for exam 1 and exam 2, respectively. Such values would be interpreted as strong agreement and are consistent with the available literature on BCS repeatability. When computing agreement for ΔBCS, a κw value of 0.49 (95% CI: 0.32, 0.63) was obtained, suggesting moderate agreement between observers. These findings suggest that studies investigating single BCS measures could use many observers with a high degree of accuracy in the results. When ΔBCS is the parameter of interest, more reliable results would be obtained if one observer conducts all assessments. 相似文献
19.
A. Köck M. Ledinek L. Gruber F. Steininger B. Fuerst-Waltl C. Egger-Danner 《Journal of dairy science》2018,101(1):445-455
This study is part of a larger project whose overall objective was to evaluate the possibilities for genetic improvement of efficiency in Austrian dairy cattle. In 2014, a 1-yr data collection was carried out. Data from 6,519 cows kept on 161 farms were recorded. In addition to routinely recorded data (e.g., milk yield, fertility, disease data), data of novel traits [e.g., body weight (BW), body condition score (BCS), lameness score, body measurements] and individual feeding information and feed quality were recorded on each test-day. The specific objective of this study was to estimate genetic parameters for efficiency (related) traits and to investigate their relationships with BCS and lameness in Austrian Fleckvieh, Brown Swiss, and Holstein cows. The following efficiency (related) traits were considered: energy-corrected milk (ECM), BW, dry matter intake (DMI), energy intake (INEL), ratio of milk output to metabolic BW (ECM/BW0.75), ratio of milk output to DMI (ECM/DMI), and ratio of milk energy output to total energy intake (LE/INEL, LE = energy in milk). For Fleckvieh, the heritability estimates of the efficiency (related) traits ranged from 0.11 for LE/INEL to 0.44 for BW. Heritabilities for BCS and lameness were 0.19 and 0.07, respectively. Repeatabilities were high and ranged from 0.30 for LE/INEL to 0.83 for BW. Heritability estimates were generally lower for Brown Swiss and Holstein, but repeatabilities were in the same range as for Fleckvieh. In all 3 breeds, more-efficient cows were found to have a higher milk yield, lower BW, slightly higher DMI, and lower BCS. Higher efficiency was associated with slightly fewer lameness problems, most likely due to the lower BW (especially in Fleckvieh) and higher DMI of the more-efficient cows. Body weight and BCS were positively correlated. Therefore, when selecting for a lower BW, BCS is required as additional information because, otherwise, no distinction between large animals with low BCS and smaller animals with normal BCS would be possible. 相似文献
20.
Francesca M. Rathbun Ryan S. Pralle Sandra J. Bertics Louis E. Armentano K. Cho C. Do Kent A. Weigel Heather M. White 《Journal of dairy science》2017,100(5):3685-3696
Extensive efforts have been made to identify more feed-efficient dairy cows, yet it is unclear how selection for feed efficiency will influence metabolic health. The objectives of this research were to determine the relationships between residual feed intake (RFI), a measure of feed efficiency, body condition score (BCS) change, and hyperketonemia (HYK) incidence. Blood and milk samples were collected twice weekly from cows 5 to 18 d postcalving for a total of 4 samples. Hyperketonemia was diagnosed at a blood β-hydroxybutyrate (BHB) ≥1.2 mmol/L and cows were treated upon diagnosis. Dry period, calving, and final blood sampling BCS was recorded. Prior mid-lactation production, body weight, body weight change, and dry matter intake (DMI) data were used to determine RFI phenotype, calculated as the difference between observed DMI and predicted DMI. The maximum BHB concentration (BHBmax) for each cow was used to group cows into HYK or not hyperketonemic. Lactation number, BCS, and RFI data were analyzed with linear and quadratic orthogonal contrasts. Of the 570 cows sampled, 19.7% were diagnosed with HYK. The first positive HYK test occurred at 9 ± 0.9 d postpartum and the average BHB concentration at the first positive HYK test was 1.53 ± 0.14 mmol/L. In the first 30 d postpartum, HYK-positive cows had increased milk yield and fat concentration, decreased milk protein concentration, and decreased somatic cell count. Cows with a dry BCS ≥4.0, or that lost 1 or more BCS unit across the transition to lactation period, had greater BHBmax than cows with lower BCS. Prior-lactation RFI did not alter BHBmax. Avoiding over conditioning of dry cows and subsequent excessive fat mobilization during the transition period may decrease HYK incidence; however, RFI during a prior lactation does not appear to be associated with HYK onset. 相似文献