首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
张港  张亦罗  曹诗雨  陈斐 《电源技术》2023,(10):1259-1262
聚合物基复合电解质(CPE)应用于全基固态锂硫电池在保证高能量密度的同时,改善了电解质与电极之间的界面接触,具有更为广阔的应用前景。但硫正极固有的绝缘性会导致较低的电子/离子传输速率,通常选用高导电性的碳材料和高离子电导率的电解质材料来改善复合硫正极的电子/离子传输速率。制备了高离子电导率的聚合物基聚氧化乙烯(PEO)-双三氟甲磺酰亚胺锂(LiTFSI)-锆酸镧锂(LLZO)复合电解质,在20和60℃下离子电导率分别为1.16×10-4和7.26×10-4S/cm,同时将其与硫-还原氧化石墨烯制备rGO-S-CPEs复合硫正极,在改善了正极中离子传输速率的同时,取代了粘结剂的作用。探究了正极材料中不同含量的复合电解质对电池性能的影响。测试结果表明,当硫正极中复合电解质含量为40%(质量分数)时,全固态锂硫电池的电化学性能最佳,在0.2 C、45℃下,首次充放电比容量为923 mAh/g,50次循环后比容量为653 mAh/g。  相似文献   

2.
杨泽林  杨程响  赵珊  陈晓涛  康树森 《电源技术》2021,45(9):1106-1108,1147
含有强力氢键的聚偏二氟乙烯-co-六氟丙烯(PVDF-HFP)具有优良的抗氧化能力,将其作为电解质基体能够匹配更高电压的阴极材料,有望获得更高的电池能量密度.但基体较高的结晶度严重限制了电解质性能的发挥.通过碳酸丙烯酯(PC)的增塑,降低了体系结晶度,获得了适用于室温高压锂电体系的PVDF-HFP/PC基固态电解质膜,其室温离子电导率达到2.3×10-3 S/cm,电化学稳定窗口达到4.8 V(vs.Li/Li+),相对于目前研究最为广泛的聚氧化乙烯(PEO)基固态电解质,其拥有显著优势.将其与高压阴极LiNi0.6Co0.2Mn0.2O2(NCM622)匹配,实现了固态锂电池在高截止电压下的稳定充放电循环.  相似文献   

3.
全固态电池是以固态电解质取代传统液体有机电解质的大容量新一代电池,由于其能量密度高和使用寿命长而愈益引人注目。现研发前景较好并形成主流的为Lipon电解质和硫化物玻璃态等高导电率无机固态电解质。此外,在结晶质中,又开发了超过非结晶高离子导电性的Li3.25Ge0.25P0.75S4和Li2S-P2S5固态电解质,已展示出世界最高的离子导电率(高达2.23.2×10-3S/cm)。全固态Li电池,在高安全性、长寿命化的新能源汽车动力电池,高可靠性的智能电网蓄能电池,以及超微超薄、柔性电池等领域,具有明显的优越性。  相似文献   

4.
郭俊  张宏  吴勇民  汤卫平 《电源技术》2022,46(2):109-114
钠离子电池具有资源丰富、能量密度高等优点,使用固态电解质的固态钠电池兼具高安全性成为研究热点。固态电解质是超离子导体,是固态电池关键材料。Na3Zr2Si2PO12是钠超离子导体(NASICON)中最具代表性的固态电解质材料。总结了Na3Zr2Si2PO12材料的结构、离子传输机制及其相互关系,旨在从机理上理解Na3Zr2Si2PO12固态电解质中钠离子传输性能;总结了主要制备方法,指出了不同方法的优缺点;在提升离子电导率方面,对合成工艺、掺杂、界面因素进行了总结,力求归纳和探索合成高性能钠离子固态电解质的途径。  相似文献   

5.
离子液体具有电导率高、电化学稳定窗口宽的优点,可应用于锂离子电池电解质中.离子液体同时具有无可燃性的特点,电池的安全性也可以得到提高.综述了以聚氧乙烯(PEO)、聚偏氟乙烯-六氟丙烯[P(VDF-HFP)]为基体的离子液体-聚合物电解质膜的制备方法和电化学性能,并对锂离子电池的离子液体-聚合物电解质的应用前景进行了展望.  相似文献   

6.
固态电池因其所具有的高能量密度和高安全性而极具发展前景,而开发离子电导率高的固态电解质是固态电池发展的一大关键问题。通过水热法制备了一种锂铝水滑石材料(Li-Al LDH),并对其结构与形貌、热稳定性、电化学性能进行了表征。从XRD和SEM分析可以看出,Li-Al LDH在180℃条件下仍然保持稳定,EIS测试结果表明Li-Al LDH的离子电导率为8.25×10-5S/cm。进一步对Li-Al LDH进行了Cs+掺杂研究,结果表明,对Li-Al LDH成功实现了Cs+掺杂,且所制得的Li-Al LDH(Cs0.1)样品,其离子电导率约为5.2×10-4S/cm,达到了现有氧化物固态电解质离子电导率水平。研究表明Cs+掺杂的Li-Al LDH作为锂电池固态电解质具有潜在的应用前景。  相似文献   

7.
深入全面理解锂/钠离子电池材料的静态结构及演化过程是提升电池材料性能的关键因素,在材料结构的各种表征方法中,固体核磁共振波谱(SS NMR)技术是获取电池材料局域结构以及微观离子扩散动力学等定量信息的一个重要表征手段。到目前为止,人们通过SS NMR技术在获取与分析电池电极/电解质材料的离子占位,充放电过程中材料的结构演化以及微观离子扩散动力学过程如离子传输路径与离子扩散系数等信息上已取得重要的研究进展,进而为理解分析电极材料的储锂机制,电池材料的构效关系乃至电池的衰减机理等方面提供了重要实验数据。结合课题组的研究工作,综述了近三年来SS NMR技术在锂/钠离子电池电极和固体电解质材料研究以及核磁共振成像技术在电池领域的应用研究进展。  相似文献   

8.
刘伟  仇卫华  王赛  盛喜忧 《电池》2007,37(1):67-69
对应用于锂离子电池电解质的离子液体按照阳离子的类型进行分类,并介绍了它们的性质.综述了近年来离子液体作为电解质的应用方式,包括单一的离子液体、离子液体与传统有机电解质混合、离子液体聚合物和离子液体中引入功能基团.讨论了阴、阳离子结构对离子液体性质的影响,离子液体与电极的匹配性.  相似文献   

9.
合成了1-甲基-3-乙基咪唑二(三氟甲基磺酰)亚胺(EMI-TFSI)和1-丁基-3-乙基咪唑二(三氟甲基磺酰)亚胺(BMI-TFSI)两种离子液体,并分别研究了它们的各种电化学性质。结果表明,两种离子液体的电化学窗口分别为4.8V和4.6V,离子液体电解质的室温电导率分别为5.4mS/cm和1.6mS/cm。使用LiCoO2和LiFePO4作为锂离子电池正极材料,分别以EMI-TFSI+1.0mol/LLiTFSI、BMI-TFSI+1.0mol/LLiTFSI为电解质组装半电池,测试其循环性能,结果表明:LiCoO2与两种离子液体电解质的相容性较差,而采用LiFePO4正极,以EMI-TFSI+1.0mol/LLiTFSI为电解质组装的半电池具有较高的比容量,经过20次循环(0.1C)几乎无衰减,比容量仍保持在120mAh/g以上,表现出较好的循环能力。  相似文献   

10.
张易航  吴斌 《电源技术》2023,(8):993-996
综述了镁离子电池当前的主要技术要求、液态电解质(无机盐电解质/格氏试剂/硼基电解质/有机卤铝酸镁基电解质)、固态电解质(无机固态电解质/聚合物固态电解质),并对其未来发展进行展望,旨在为镁离子电池电解液的研究工作提供一定的参考和借鉴作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号