首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reliable design and safe operation of heavy-duty hydrogen refueling stations are essential for the successful deployment of heavy-duty fuel cell electric vehicles (FCEVs). Fueling heavy-duty FCEVs is different from light-duty vehicles in terms of the dispensed hydrogen quantities and fueling rates, requiring tailored fueling station design for each vehicle class. In particular, the selection and design of the onboard hydrogen storage tank system and the fueling performance requirements influence the safe design of hydrogen fueling stations. A thermodynamic modeling and analysis are performed to evaluate the impact of various fueling parameters and boundary conditions on the fueling performance of heavy-duty FCEVs. We studied the effect of dispenser pressure ramp rate and precooling temperature, initial tank temperature and pressure, ambient temperature, and onboard storage design parameters, such as onboard storage pipe diameter and length, on the fueling rate and final vehicle state-of-charge, while observing prescribed tank pressure and temperature safety limits. An important finding was the sensitivity of the temporal fueling rate profile and the final tank state of charge to the design factors impacting pressure drop between the dispenser and vehicle tank, including onboard storage pipe diameter selection, and flow coefficients of nozzle, valves, and fittings. The fueling rate profile impacts the design and cost of the hydrogen precooling unit upstream of the dispenser.  相似文献   

2.
大容量高压车载储氢气瓶充氢过程的热力学响应特性是氢燃料电池汽车氢气安全充注亟需解决的关键问题。采用CFD模型,对70 MPa Ⅲ型车载储氢气瓶在不同长径比、充氢速率、气瓶初始压力、气源温度条件下充氢过程的热力学响应特性进行模拟。结果表明,在高压下氢气不可视为理想气体;重力对充氢过程的影响不能忽略;容积100 L储氢气瓶的最佳长径比为3.55;气源温度对充氢过程的影响最为显著,其次是气瓶初始压力与充氢速率,与热力学分析获得的结论类似。  相似文献   

3.
A mathematical model of heat and mass transfer in activated carbon (AC) tank for hydrogen storage is proposed based on a set of partial differential equations (PDEs) controlling the balances or conservations of mass, momentum and energy in the tank. These PDEs are numerically solved by means of the finite element method using Comsol MultiphysicsTM. The objective of this paper is to establish a correct set of PDEs describing the physical system and appropriate parameters for simulating the hydrogen storage process. In this paper, we establish an axisymmetric model of hydrogen storage by adsorption on activated carbon, considering heat and mass transfer of hydrogen in storage tank during the charging process at room temperature (295 K) and the pressure of 10 MPa. To simulate the hydrogen storage process accurately, the heat capacity of adsorbed phase, the contact thermal resistance between the AC bed and the steel wall and the inertial resistance of high speed charging hydrogen gas are all taken into account in the model. The governing equations describing the hydrogen storage process by adsorption are solved to obtain the pressure changes, temperature distributions and adsorption dynamics in the storage tank. The pressure reaches a maximum value of 10 MPa at about 240 s. A small downward trend appears in the later stage of the charging process, which lasts 700 s. The temperature distribution is highest in the center of the tank. The temperature history exhibits a rapid increase initially, followed by a steady decline. A modified Dubinin–Astakhov (D–A) model is used to represent the hydrogen adsorption isotherms. The highest hydrogen uptake is 10 mol H2/kg AC, at the entrance of hydrogen storage tank, where the temperature is lowest. The adsorption distribution at a given time is mainly determined by the temperature distribution, because the pressure is almost uniform in the tank. The adsorption history, however, is dominated by the pressure history because the pressure change is much larger than temperature change during the charging process of hydrogen storage.  相似文献   

4.
5.
Compressed hydrogen storage is widely used in hydrogen fuel cell vehicles (HFCVs). Cascade filling systems can provide different pressure levels associated with various source tanks allowing for a variable mass flow rate. To meet refueling performance objectives, safe and fast filling processes must be available to HFCVs. The main objective of this paper is to establish an optimization methodology to determine the initial thermodynamic conditions of the filling system that leads to the lowest final temperature of hydrogen in the on-board storage tank with minimal energy consumption. First, a zero-dimensional lumped parameter model is established. This simplified model, implemented in Matlab/Simulink, is then used to simulate the flow of hydrogen from cascade pressure tanks to an on-board hydrogen storage tank. A neural network is then trained with model calculation results and experimental data for multi-objective optimization. It is found to have good prediction, allowing the determination of optimal filling parameters. The study shows that a cascade filling system can well refuel the on-board storage tank with constant average pressure ramp rate (APRR). Furthermore, a strong pre-cooling system can effectively lower the final temperature at a cost of larger energy consumption. By using the proposed neural network, for charging times less than 183s, the optimization procedure predicts that the inlet temperature is 259.99–266.58 K, which can effectively reduce energy consumption by about 2.5%.  相似文献   

6.
The heat transfer and phase change processes of cryogenic liquid hydrogen (LH2) in the tank have an important influence on the working performance of the liquid hydrogen-liquid oxygen storage and supply system of rockets and spacecrafts. In this study, we use the RANS method coupled with Lee model and VOF (volume of fraction) method to solve Navier-stokes equations. The Lee model is adopted to describe the phase change process of liquid hydrogen, and the VOF method is utilized to calculate free surface by solving the advection equation of volume fraction. The model is used to simulate the heat transfer and phase change processes of the cryogenic liquid hydrogen in the storage tank with the different gravitational accelerations, initial temperature, and liquid fill ratios of liquid hydrogen. Numerical results indicate greater gravitational acceleration enhances buoyancy and convection, enhancing convective heat transfer and evaporation processes in the tank. When the acceleration of gravity increases from 10?2 g0 to 10?5 g0, gaseous hydrogen mass increases from 0.0157 kg to 0.0244 kg at 200s. With the increase of initial liquid hydrogen temperature, the heat required to raise the liquid hydrogen to saturation temperature decreases and causes more liquid hydrogen to evaporate and cools the gas hydrogen temperature. More cryogenic liquid hydrogen (i.e., larger the fill ratio) makes the average fluid temperature in the tank lower. A 12.5% reduction in the fill ratio resulted in a decrease in fluid temperature from 20.35 K to 20.15 K (a reduction of about 0.1%, at 200s).  相似文献   

7.
通过计算流体动力学(CFD)模拟计算分析某实际工程设计阶段的充盐策略参数,对储罐内熔盐温度和储罐壁面温度的影响,通过分析模拟结果后确定在项目具体实施阶段采用预热系统及电加热器系统配合的充盐策略.通过将此充盐策略用于实际商业项目第1次充盐过程,效果良好,储罐整体温度较为均匀,同时也发现在第1次充盐过程中储罐基础存在较为明...  相似文献   

8.
The capacity of hydrogen storage by solar adsorption in activated carbon AX-21 and filling rate with simultaneous production have been conditioned under a minimum pressure, to nullify the cost of energy supplied to compressor. A gas accumulator tank connected to electrolyzer and continuous adsorption beds have been proposed in the process scheme. Minimum pressure required for the tank at an ambient filling temperature fixed to 25 °C is only 2 bar. While at atmospheric filling pressure the corresponding value of filling temperature is found to be 5 °C. However, a cooling fluid at low temperature for adsorbent bed during the adsorption process will be an efficient way for increasing the stored amount of hydrogen. Almost 4.5 kg of hydrogen can be stored in an adsorbent mass of 200 kg. The adsorption flow rate has been also modelled to be controlled for being adapted to production rate.  相似文献   

9.
The future success of fuel cell electric vehicles requires a corresponding infrastructure. In this study, two different refueling station concepts for fuel cell passenger cars with 70 MPa technology were evaluated energetically. In the first option, the input of the refueling station is gaseous hydrogen which is compressed to final pressure, remaining in gaseous state. In the second option, the input is liquid hydrogen which is cryo-compressed directly from the liquid phase to the target pressure. In the first case, the target temperature of −33 °C to −40 °C [1] is achieved by cooling down. In the second option, gaseous deep-cold hydrogen coming from the pump is heated up to target temperature. A dynamic simulation model considering real gas behavior to evaluate both types of fueling stations from an energetic perspective was created. The dynamic model allows the simulation of boil-off losses (liquid stations) and standby energy losses caused by the precooling system (gaseous station) dependent on fueling profiles. The functionality of the model was demonstrated with a sequence of three refueling processes within a short time period (high station utilization). The liquid station consumed 0.37 kWh/kg compared to 2.43 kWh/kg of the gaseous station. Rough estimations indicated that the energy consumption of the entire pathway is higher for liquid hydrogen. The analysis showed the high influence of the high-pressure storage system design on the energy consumption of the station. For future research work the refueling station model can be applied to analyze the energy consumption dependent on factors like utilization, component sizing and ambient temperature.  相似文献   

10.
This paper presents the conceptual design for a two-step thermochemical cycle producing hydrogen continuously, even off-sun, with the concentrated solar energy as the heat source. For a case study, the two-step iron oxide cycle (Fe3O4/FeO) is selected to illustrate the design concept. Two reactors, one storage tank and the solar collector comprise the system. Molten wustite (FeO) is accumulated in the storage tank on-sun. The FeO is not only involved in the reactions but also acts as the heat transfer medium, obtaining the energy from the solar insolation and delivering energy to support the thermal decomposition of magnetite (Fe3O4). In this way, the temperature limitation (<800 K) of molten salt is solved, and the intermittency problem of variable insolation is circumvented. A simple feedback scheme is used to control the flow rate between the storage tank and the reactors in order to minimize the temperature fluctuations. For the wustite hydrolysis reaction, the volumetric flow rate of water is regulated to control the temperature in the reactor. We derived the kinetics of the two-step iron oxide cycle from previous experimental reports. We simulated the dynamics of the system over 50 days with mass and energy balances. The simulation results show that the storage tank temperature will be stationary at 2250 K. After five days, the decomposition temperature at 2100 K, and the hydrogen production stabilized at 7 kg/min. Admitting the difficulty of high temperature operation, this design is still promising due to the high efficiency of two-step cycle itself, the process intensification of the FeO acting as the reactant/product/heat transfer medium (no need of heat exchangers), and the continuous operation/production of hydrogen.  相似文献   

11.
The two most promising materials for a hydrogen cryo-adsorption tank, activated carbon AX-21_33 and metal-organic framework MOF-177, have been investigated in the pressure range up to 2 MPa and at temperatures from 77 K to 125 K and at room temperature. The total hydrogen storage, including adsorbed hydrogen and gaseous hydrogen, has been determined for both samples. The results were evaluated with respect to the operating conditions of a tank system at cryogenic conditions, assuming a maximum tank pressure of 2 MPa and a minimum back pressure for the hydrogen consumer of 0.2 MPa. AX-21_33 shows a usable capacity of 3.5 wt.% in the case of isothermal operation at 77 K and 5.6 wt.%, if the tank is loaded at 77 K and the temperature is increased by 40 K during unloading. Under the same conditions, MOF-177 has a usable capacity of 6.1 wt.% and 7.4 wt.%, respectively. The results show that the heat of adsorption has a high impact on the amount of hydrogen remaining in a tank after unloading and that the heat management plays a crucial role for the design of a cryogenic tank system.  相似文献   

12.
The reaction of hydrogen gas with a metal to form a metal hydride is exothermic. If the heat released is not removed from the system, the resulting temperature rise of the hydride will reduce the hydrogen absorption rate. Hence, hydrogen storage systems based on hydride materials must include a way to remove the heat generated during the absorption process. The heat removal rate can be increased by (i) increasing the effective thermal conductivity of the metal hydride by mixing it with high-conductivity materials such as aluminum foam or graphite, (ii) optimizing the shape of the tank, and (iii) introducing an active cooling environment instead of relying on natural convection. This paper presents a parametric study of hydrogen storage efficiency that explores quantitatively the influence of these parameters. An axisymmetric mathematical model was formulated in Ansys Fluent 12.1 to evaluate the transient heat and mass transfer in a cylindrical metal hydride tank, and to predict the transient temperatures and mass of hydrogen stored as a function of the thermal conductivity of the enhanced hydride material, aspect ratio of the cylindrical tank, and thermal boundary conditions. The model was validated by comparing the transient temperature at selected locations within the storage tank with concurrent experiments conducted with LaNi5 material. The parametric study revealed that the aspect ratio of the tank has a stronger influence when the effective thermal conductivity of the metal hydride bed is low or when the heat removal rate from the tank surface is high (active cooling). It was also found that for a hydrogen filling time of 3 min, adding 30% aluminum foam to the metal hydride maximizes hydrogen absorption under natural convection, whereas the addition of only 10% aluminum foam maximizes the hydrogen content under active cooling. For filling times beyond 3 min, the amount of aluminum foam required to maximize hydrogen content can be reduced for both natural convection and active cooling. This study should prove useful in the design of practical metal hydride-based hydrogen storage systems.  相似文献   

13.
Some complete experimental data sets, not only on the hydrogen temperature within the tank during filling, but also on the supplied temperature and pressure from the station have been opened for analysis of the temperature change with time. The data were independently obtained for 6 different conditions and have been analyzed and checked to validate the Monde et al. model. It is found that the measured temperatures are well predicted using the software based on the model and the heat loss during filling with hydrogen is also well predicted, if a suitable heat transfer coefficient is adopted.  相似文献   

14.
Dealing with the conflict between the temperature/pressure rise and the total mass of hydrogen is a key challenge for rapid hydrogen filling of the hydrogen storage tank (HST). The temperature/pressure rise and total mass of hydrogen cause safety risks because of the former and limited cruise as the result of the latter. Therefore, safe hydrogen filling strategy is essential for the promotion of hydrogen fuel cell vehicles (FCVs). The existing thermodynamic model of the hydrogen storage tank is simplified either in the hydrogen state or the heat conduction of the HST wall, which can be hardly used as the real-time and accurate references for developing the filling strategy. To solve this problem, this paper works out the mathematical expression of a HST thermodynamic model. With the proposed HST thermodynamic model, a variable mass flow hydrogen filling strategy is developed. The results show that at the mass flow (12  g/s), the errors of the thermodynamic model are 7.1% and 6.8% for the temperature and pressure rise, compared with the computational fluid dynamics (CFD) model. At the mass flow (4.84  g/s), the thermodynamic model errors are 8.3% and 7.1% for the temperature and pressure rise, compared with the experimental data. Also, compared with the rule-based hydrogen filling strategies, the final state of charge (SoC) with the new filling strategy improve by 3%, 3.7%, and 2.7% at different initial temperatures, different volumes, and initial SoCs, respectively.  相似文献   

15.
Metal-hydride (MH) reactors are one of the most promising approaches for hydrogen storage because of their low operating pressure, high storage volumetric density and high security. However, the heat transfer performance of the MH reactor for high hydrogenation rate is inferior. In this study, the heat transfer and hydrogen absorption process of metal hydride tank performance in Mg2Ni bed is analyzed numerically using commercial ANSYS-FLUENT software. The MH reactor is considered a cylindrical bed including a helical tube along with a central straight return tube for the cooling fluid. The effects of geometrical parameters including the tube diameter, the pitch size and the coil diameter as well as operational parameters on the heat exchanged and hydrogen absorption reactive time are evaluated comprehensively. The results showed that the helical heat exchanger along with central return tube could effectively improve heat exchanged between the cooling fluid and the metal alloy and reduce the temperature of the bed results in a higher rate of hydrogen absorption. For a proper configuration and geometry of the helical coil heat exchanger with a central return tube, the absorption reaction time is reduced by 24% to reach 90% of the storage capacity. After the optimization study of the geometrical parameters, a system with the heat exchanger tube diameter of 5 mm, coil diameter of 18 mm and the coil pitch value of 10 mm is recommended to have lower hydrogen absorption time and higher hydrogen storage capacity. The presented MH reactor can be applied for improvement of heat exchange and absorption process in industrial MH reactors.  相似文献   

16.
Characteristics of high-pressure hydrogen jet flames resulting from ignition of hydrogen discharge during the bonfire test of composite hydrogen storage vessels are studied. Firstly, a 3-D numerical model is established based on the species transfer model and SST k − ω turbulence model to study the high-pressure hydrogen jet flow. It is revealed that under-expanded jets are formed after the high-pressure hydrogen discharging from the vessel. Secondly, the mathematical methods are adopted to study the high-pressure hydrogen jet flames. The effects of pressure, initial temperature and the nozzle diameter on the jet flames are investigated. The results show that the jet flame length increases with the increase of discharge pressure, but decreases with the increase of nozzle diameter and temperature difference between the filling hydrogen temperature and the environment temperature. Finally, the simulation models are established to study the characteristics of hydrogen jet flames in an open space. The effects of barrier walls on the distribution of jet flames are also studied. The results show that the barrier walls can greatly reduce the damage from hydrogen jet flames to testers and properties around.  相似文献   

17.
High gas temperatures can be reached inside a hydrogen tank during the filling process because of the large pressure increase (up to 70–80 MPa) and because of the short time (∼3 min) of the process. High temperatures can potentially jeopardize the structural integrity of the storage system and one of the strategies to reduce the temperature increase is to pre-cool the hydrogen before injecting it into the tank. Computational Fluid Dynamics (CFD) tools have the capabilities of capturing the flow field and the temperature rise in the tank. The results of CFD simulations of fast filling with pre-cooling are shown and compared with experimental data to assess the accuracy of the CFD model.  相似文献   

18.
Hydrogen adsorption isotherms for MIL-101 metal-organic framework are reported within a wide pressure range for temperatures between 77 and 295 K. Data modeling with the modified Dubinin-Astakhov equation shows a good fitting with the experimental results. The calculated absolute adsorption allowed the evaluation of the total hydrogen storage capacity for high pressure storage tank filled with MIL-101 as sorbent. The results show that the gravimetric and volumetric storage capacities at 198 K and 70 MPa are within the present-day accepted DOE targets, even if the storage capacity is slightly decreased by 3–6% as compared to the tank without sorbent. Moreover, the calculations reveal that the dormancy time is much increased, as compared to a tank without sorbent, exceeding the ultimate DOE target of 14 days. The MIL-101 assisted cold high-pressure hydrogen storage at ∼200 K and 70 MPa, brings about an additional advantage and seems promising for both mobile and stationary applications.  相似文献   

19.
Compressed hydrogen tanks are now widely used for onboard hydrogen storage in fuel cell vehicles (FCVs). However, because of the high storage pressure and the low thermal conductivity of carbon fibre reinforced polymer (CFRP), the emptying of such tanks during driving or emergency release can cause a significant temperature decrease and result in an in-tank gas temperature below the low safety temperature limit of ?40 °C even in warm weather. Once the gas temperature within the tank is lower than ?40 °C, the sealing elements at the boss of the tank may fail, and glass transition of the polymer liner of the type IV tank may occur; both can cause hydrogen leakage and severe safety problems. In this paper, the heat transfer correlations, thermodynamic analyses, computational fluid dynamics (CFD) simulations, experimental studies, and thermal management methods associated with the emptying process of compressed hydrogen tanks are comprehensively reviewed. Future research directions on this topic are suggested.  相似文献   

20.
Thermal design analysis of a 1-L cryogenic liquid hydrogen storage tank without vacuum insulation for a small unmanned aerial vehicle was carried out in the present study. To prevent excess boil-off of cryogenic liquid hydrogen, the storage tank consisted of a 1-L inner vessel, an outer vessel, insulation layers and a vapor-cooled shield. For a cryogenic storage tank considered in this study, the appropriate heat inleak was allowed to supply the boil-off gas hydrogen to a proton electrolyte membrane fuel cell as fuel. In an effort to accommodate the hydrogen mass flow rate required by the fuel cell and to minimize the storage tank volume, a thermal analysis for various insulation materials was implemented here and their insulation performances were compared. The present thermal analysis showed that the Aerogel thermal insulations provided outstanding performance at the non-vacuum atmospheric pressure condition. With the Aerogel insulation, the tank volume for storing 1-L liquid hydrogen at 20 K could be designed within a storage tank volume of 7.2 L. In addition, it was noted that the exhaust temperature of boil-off hydrogen gas was mainly affected by the location of a vapor-cooled shield as well as thermal conductivity of insulation materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号