首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用搅拌铸造法成功制备了SiC_P/Mg(AZ91)复合材料并对铸态复合材料进行了等通道角挤压变形(Equal channel angular pressing,ECAP)。结果表明,搅拌铸造态SiC_P/AZ91复合材料的基体组织致密,颗粒与基体结合良好,没有出现宏观团聚;SiC_P大部分聚集在晶界附近区域并呈"项链状"分布。ECAP变形可以有效地消除铸态SiC_P/AZ91复合材料中的SiC_P"项链状"分布,并且随着ECAP道次的增加,SiC_P分布更加均匀;在ECAP过程中,SiC_P发生了一定断裂但并不明显。SiC_P/AZ91复合材料基体晶粒随着变形道次的提高而逐渐细化。基体晶粒细化以及SiC_P分布均匀化是SiC_P/AZ91复合材料屈服强度和抗拉强度随着道次提升而逐渐增加的主要原因。  相似文献   

2.
In this work, a commercial magnesium alloy, AZ31B in hot-rolled condition, has been subjected to severe plastic deformation via four passes of equal channel angular pressing (ECAP) to modify its microstructure. Electron backscatter diffraction (EBSD) was used to characterize the microstructure of the as-received, ECAPed and mechanically loaded specimens. Mechanical properties of the specimens were evaluated under both compression and tension along the rolling/extrusion direction over a wide range of strain rates. The yield strength, ultimate strength and failure strain/elongation under compression and tension were compared in detail to sort out the effects of factors in terms of microstructure and loading conditions. The results show that both the as-received alloy and ECAPed alloy are nearly insensitive to strain rate under compression, and the stress–strain curves exhibit clear sigmoidal shape, pointing to dominance of mechanical twinning responsible for the plastic deformation under compression. All compressive samples fail prematurely via adiabatic shear banding followed by cracking. Significant grain size refinement is identified in the vicinity of the shear crack. Under tension, the yield strength is much higher, with strong rate dependence and much improved tensile ductility in the ECAPed specimens. Tensile ductility is even much larger than the malleability under compression. This supports the operation of 〈c + a〉 dislocations. However, ECAP lowers the yield and flow strengths of the alloy under tension. We attempted to employ a mechanistic model to provide an explanation for the experimental results of plastic deformation and failure, which is in accordance with the physical processes under tension and compression.  相似文献   

3.
Structure, mechanical, and service properties of a Cu–Cr–Hf alloy after quenching, equal‐channel angular pressing (ECAP), and subsequent aging have been studied. The positive effects of ultrafine‐grained structure formation (grain/subgrain size of ≈200 nm) during ECAP and strengthening particles precipitation upon subsequent aging at 450 °C on the mechanical and fatigue properties of the alloy are shown. Ultrafine‐grained Cu–Cr–Hf alloy after aging shows increasing in the fatigue limit on the basis of 107 cycles from 185 to 375 MPa relative to that of the initial coarse‐grained state. The alloy after ECAP and aging also exhibits sufficient elongation to failure (11.4%) and good electrical conductivity (78%IACS).  相似文献   

4.
This work presents experimental results on effects of severe plastic deformation (SPD) and subsequent natural ageing on tensile mechanical properties and fatigue crack growth resistance of fine‐grained 7075 Al alloy. The alloy was subjected to equal channel angular pressing (ECAP) after solution treatment. Fatigue crack propagation tests were conducted in room condition, at load ratio R = 0.1 and different load ranges on small disk shaped compact tension specimens. Fatigue fracture surface is also investigated using scanning electron microscopy observations and showed more ductile fatigue crack growth in the unECAPed specimen. Despite the increased tensile strength after ECAP, the ductility that controls low‐cycle fatigue behaviour has decreased. It is found that ECAP has resulted in a remarkable change in Paris regime parameters and a significant increase in fatigue crack growth rate. The decrease in fatigue crack growth resistance and ΔKc after ECAP can be attributed to the decrease in alloy's ductility.  相似文献   

5.
Crack growth and high cycle fatigue behaviour of an AA6060 aluminium alloy after ECAP combined with a subsequent heat treatment Crack growth properties of the Al‐Mg‐Si alloy AA6060 as well as the high cycle fatigue behaviour have been investigated after equal‐channel angular pressing (ECAP). In our study, experiments have been conducted on different stages of microstructural breakdown and strain hardening of the material as they were present after different numbers of ECAP passes. A bimodal condition, obtained after two pressings, and a homogeneously ultrafine‐grained condition after eight repetitive pressings have been investigated. Furthermore, optimized conditions with an enhanced ductility, produced by ECAP processing combined with a following short‐time aging treatment were included into the study. Crack growth experiments have been conducted in the near‐threshold regime and the region of stable crack growth, covering a range of load ratios from R = 0.1 up to 0.7. It was found that the lowered fatigue threshold ΔKth of the as‐extruded material can be enhanced by the combination of ECAP and short‐time aging, owing to the increased ductility and strain hardening capability of this material. By means of SEM investigations and tensile tests, the crack growth properties of the different conditions were related to microstructural and mechanical features. In fatigue tests, load reversals up to failure and the fatigue limit for an as‐extruded condition and an optimized condition after two ECAP‐passes have been compared to the coarse grained initial condition and a remarkable increase in fatigue strength was noted.  相似文献   

6.
Abstract

AZ31 Mg alloy samples were processed by equal channel angular pressing (ECAP) at 220°C for four passes. An average grain size of ~1·9 μm with reasonable homogeneity was obtained. The ECAP process imparted large plastic shear strains and strong deformation textures to the material. Subsequent annealing of the equal channel angular pressed samples produced interesting mechanical behaviours. While yield strength increased and ductility decreased immediately after undergoing ECAP, annealing at temperatures <250°C restored ductility significantly at a small decrease in of yield strength. Annealing at temperatures >250°C reduced yield strength without additional improvement in ductility. It is believed that the combination of stress relief via dislocation elimination, refined microstructure and the retention of a strong ECAP texture at low annealing temperatures enhance ductility. High temperature annealing breaks down the ECAP texture resulting in no further improvement in ductility. The results show that the mechanical properties of the alloy can be positively influenced by annealing after ECAP to achieve a combination of strength and ductility.  相似文献   

7.
A magnesium AZ31 alloy was processed by equal-channel angular pressing (ECAP) for up to 8 passes to reduce the grain size to ~1.0 μm. Following ECAP, microhardness measurements were taken to evaluate the mechanical properties of the material. Ball-on-disc dry sliding tests were conducted to compare the wear behaviour of the as-received alloy and the alloy processed by ECAP. The surface topography and volume loss were recorded for all samples. The results show that the fluctuations and average values of the coefficient of friction are improved after processing by ECAP. In addition, there is a decrease in the wear depth and volume loss with increasing numbers of ECAP passes. The ECAP-processed alloy has a higher wear resistance than the unprocessed alloy and it is a suitable candidate material for use in industrial applications.  相似文献   

8.
The low temperature peculiarities of plastic deformation of AZ31 and AE42 magnesium alloys processed by equal‐channel angular pressing (ECAP) were studied in temperature range 0.5–293 K. At 4.2 K and lower, the stress–strain curves become serrated with the jerk stress frequency and amplitude sensitive to the flow stress, temperature and processing history. The yield stress of the samples before and after ECAP is determined by both the grain size refinement and basal texture evolution. The slope of the temperature dependencies of the yield stress is typical for the thermally activated interaction of dislocations with a spectrum of local obstacles. The activation of the dynamic recovery is responsible for the decrease of the work hardening rate of the samples (i) with a temperature increase and (ii) after ECAP.  相似文献   

9.
Incremental equal channel angular pressing (I‐ECAP) is used in this work to produce ultrafine‐grained (UFG) pure iron, aluminum alloy 5083, commercial purity titanium (grade 4), and magnesium alloy AZ31B. Pure iron is processed at room temperature, aluminum alloy at 200 °C, titanium at 320 °C, and magnesium alloy at 150 °C. Strength improvement, attributed to the grain refinement below 1 μm, is reported for all processed materials. The yield strength increase is the most apparent in pure iron, reaching almost 500 MPa after one pass of I‐ECAP, comparing to 180 MPa in the as‐forged conditions. UFG titanium, aluminum, and magnesium alloys obtained in this study reached yield stress of 800, 350, and 300 MPa, respectively, in each case exhibiting the yield strength increase by at least 30%, comparing to the alloys processed by conventional metal forming operations such as forging and rolling.  相似文献   

10.
To ascertain the influence of severe plastic deformation (SPD) on a Ti–Nb–Ta–Zr (TNTZ) alloy, we studied the room temperature mechanical behavior and microstructural evolution of an ultrafine-grained (UFG) Ti–36Nb–2Ta–3Zr (wt%) alloy prepared via equal-channel angular pressing (ECAP) of the as-hot-extruded alloy. The tensile behavior, phase composition, grain size, preferred orientation, and dislocation density of the UFG alloy, processed under different conditions, were analyzed and discussed. Compared to the as-hot-extruded alloy, the ECAP-processed TNTZ alloy (3 passes) exhibited approximately 40 and 88 % increase in average ultimate strength and yield strength, respectively. Moreover, as the number of ECAP passes increased from 3 to 6, the TNTZ alloy exhibited not only the expected increase in ultimate and yield strength values, but also a slight increase in elongation. Our results suggest that the deformation mechanisms that govern the behavior of the as-hot-extruded coarse grained (CG) TNTZ alloy during ECAP involve a combination of stress-induced martensitic transformation and dislocation activity. In the case of the ECAP-processed UFG TNTZ alloy, the deformation mechanism is proposed to involve two components: first, dislocation activity induced by the strain field imposed during ECAP; and second, the formation of α″ martensite phase during the early stages of ECAP which eventually transforms into β phase during continued deformation. We propose that the deformation mechanism governing the room temperature behavior of the TNTZ alloy strongly depends on the grain size of the β phase.  相似文献   

11.
Experiments were conducted on a commercial AZ61 alloy to evaluate the potential for achieving an ultrafine grain size and superplastic ductilities through the use of the EX-ECAP two-step processing procedure of extrusion plus equal-channel angular pressing. The results show that EX-ECAP gives excellent grain refinement with grain sizes of 0.6 and 1.3 μm after pressing at 473 and 523 K, respectively. The alloy processed by EX-ECAP exhibits exceptional superplastic properties including a maximum elongation of 1320% after pressing through four passes when testing at 473 K with an initial strain rate of 3.3 × 10−4 s−1. This result compares with an elongation of 70% achieved in the extruded condition without ECAP under similar testing conditions.  相似文献   

12.
High‐cycle fatigue properties were investigated for Ti–5% Al–2.5% Sn ELI alloy with a mean α grain size of 80 μm, which had been used for liquid hydrogen turbo‐pumps of Japanese‐built launch vehicles. At cryogenic temperatures, the fatigue strength in high‐cycle region did not increase in proportion to increments of the ultimate tensile strength and the fatigue strengths at around 106 cycles were about 300 MPa independent of test temperatures. Fatigue cracks initiated in the specimen interior independent of the test temperatures of 4 K, 77 K and 293 K. At 4 K and 77 K, several crystallographic facet‐like structures were formed at crack initiation sites. On the other hand, there were no facet‐like structures that could be clearly identified at the crack initiation sites at 293 K. Low fatigue strengths in longer‐life region at cryogenic temperatures could be attributable to the formation of large sub‐surface crack initiation sites, where large facet‐like structure are formed.  相似文献   

13.
Experiments were conducted on the magnesium AZ31 alloy to evaluate the significance of conducting equal-channel angular pressing (ECAP) with a back-pressure. Following processing by ECAP, the values of the Vickers microhardness were recorded on the cross-sectional planes and microstructural observations were undertaken using transmission electron microscopy. The results show an increase in the hardness in the first pass with significant microstructural inhomogeneity and a transition towards a more homogeneous structure with subsequent passes. The grain size was measured as 0.9 μm after 8 passes. A comparison with published data on the same alloy processed by ECAP without a back-pressure suggests several advantages in incorporating a back-pressure into ECAP. These advantages include the ability to achieve greater grain refinement, a potential for pressing at lower temperatures and the development of a more rapid evolution towards a homogeneous microstructure.  相似文献   

14.
AZ91 magnesium alloy reinforced with SiC particulates was fabricated via powder metallurgy technique as well as mechanical alloying process where a planetary ball mill was employed. Microstructure and mechanical properties of the fabricated AZ91 composites had been evaluated. Microstructural study showed that grain size of the material was refined and SiC particulates were well distributed after mechanical alloying. Mechanical tests of the composite showed an enhanced yield and ultimate tensile strengths for the mechanically alloyed samples compared with those prepared via the powder metallurgical route.  相似文献   

15.
对纯钛进行2道次室温等径弯曲通道变形(ECAP)、等径弯曲通道变形加旋锻复合变形(ECAP+RS)并在旋锻后在300℃和400℃退火1 h,制备出4种具有不同组织的超细晶纯钛。对这4种超细晶纯钛进行疲劳裂纹扩展实验并观察分析超细晶纯钛的显微组织和疲劳断口的形貌,研究了裂纹的扩展行为。结果表明:显微组织对超细晶纯钛的疲劳裂纹扩展门槛值和近门槛区有显著的影响;超细晶纯钛的疲劳裂纹扩展门槛值随着塑性变形量的增大而增大,随着旋锻后退火温度的提高而降低;疲劳裂纹扩展速率曲线因超细晶纯钛晶粒尺寸和强度的影响出现转折,转折前ECAP+RS复合变形纯钛的抗疲劳裂纹扩展能力比ECAP变形强,且随着退火温度的提高而降低;转折后4种超细晶纯钛的疲劳裂纹扩展速率相差较小,呈现出相反的结果。疲劳裂纹扩展寿命中转折前近门槛区裂纹扩展寿命占绝大部分,因而转折前的门槛值与近门槛区的扩展速率对抗裂纹扩展能力更为重要。  相似文献   

16.
The effect of cerium (Ce) on high‐cycle fatigue behaviour of die‐cast magnesium alloy AZ91D was investigated. Mechanical fatigue tests were conducted at the stress ratio, R= 0.1 on specimens of AZ91D alloys with different Ce additions. The microstructure and fatigue fracture surfaces of specimens were examined using a scanning electron microscope (SEM) to reveal the micromechanisms of fatigue crack initiation and propagation. The results show that the grain size of AZ91D is refined, and the amount of porosity decreases and evenly distributes with the addition of Ce. The fatigue strength of AZ91D evaluated by the up‐and‐down load method increases from 96.7 MPa to 116.3 MPa (1% Ce) and 105.5 MPa (2% Ce), respectively. The fatigue cracking of AZ91D alloy initiates at porosities and inclusions of the alloy's interior, and propagates along the grain boundaries. The fatigue fracture surface of test specimens shows the mixed fracture characteristics of quasi‐cleavage and dimple.  相似文献   

17.
A commercial magnesium alloy, AZ31 in hot-rolled condition, has been processed by equal channel angular pressing (ECAP) to get microstructure modified. Uniaxial tensile tests were conducted along the rolling/extrusion direction for as-received AZ31 alloy and ECAPed AZ31 alloy. Then, three point bending fracture tests were conducted for specimens with a pre-crack perpendicular to the extruded direction. Digital image correlation (DIC) technique was adopted to determine the deformation field around the crack tip. The fracture surfaces of the failed specimens after tensile tests and fracture tests were observed by Scanning Electron Microscope (SEM). To explore the deformation mechanism, the microstructure and texture of different regions on the deformed specimens were examined through electron backscatter diffraction (EBSD). The results show ECAP process improves both the tensile elongation and fracture toughness of AZ31 alloy. Different from the slip dominated deformation mechanism in the tensile test, deformation twinning presents in the deformation zone adjacent to the crack tip in the three point bending fracture tests. The fracture surface is characterized by co-occurrence of dimple and cleavage features.  相似文献   

18.
Excellent superplastic elongations (in excess of 1,200%) were achieved in a commercial cast AZ31 alloy processed by low temperature equal-channel angular pressing (ECAP) with a back-pressure to produce a bimodal grain structure. In contrast, AZ31 alloy processed by ECAP at temperatures higher than 200 °C showed a reasonably uniform grain structure and relatively low ductility. It is suggested that a bimodal grain structure is advantageous because the larger grains contribute to strain hardening thus delaying the onset of necking, while grain boundary sliding associated with small grains provides a stabilizing effect due to enhanced strain rate sensitivity.  相似文献   

19.
等通道挤压AZ80镁合金的析出行为和性能   总被引:3,自引:0,他引:3  
研究了AZ80镁合金经300℃等通道挤压(ECAP)后的组织、织构与力学性能的演变规律以及第二相析出行为的影响。结果表明:ECAP显著促进了粒状连续析出,可有效节省后续热处理时间。A路径多道次挤压最终获得基面织构;Bc路径挤压后形成基面近似平行于剪切面的织构;第二相析出对ECAP织构特征的形成没有显著影响。用该工艺可获得较高的延伸率(13%-19%),但是抗拉强度过低(300 MPa),综合机械性能不理想。可通过抑制挤压前的未溶粗大粒子的析出、减少挤压道次和降低挤压温度等措施优化AZ80的析出控制。  相似文献   

20.
The microstructure evolution and tensile properties of ZK60 magnesium alloy after equal channel angular pressing (ECAP) have been investigated. The results show that the two-step ECAP process is more effective in grain refinement than the single-step ECAP process due to the lower deformation temperature, a mean grain size of ~0.8 μm was obtained after two-step ECAP process at 513 K for four passes and 453 K for four passes. The EBSD examination reveals that ZK60 alloy after two-step ECAP process exhibits a more homogeneous grain size and misorientation distribution than single-step ECAP process. Both alloys after ECAP process present similar strong {0002} texture. The tensile strength of two-step ECAP alloy has also been improved compared with the single-step ECAP alloy. The strengthening effect was mainly ascribed to grain refinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号