首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we introduce a new scheduling model in which deteriorating jobs and learning effect are both considered simultaneously. By deterioration and the learning effect, we mean that the actual processing time of a job depends not only on the processing time of the jobs already processed but also on its scheduled position. For the single-machine case, we show that the problems of makespan, total completion time and the sum of the quadratic job completion times remain polynomially solvable, respectively. In addition,we show that the problems to minimize total weighted completion time and maximum lateness are polynomially solvable under certain conditions.  相似文献   

2.
In this paper we introduce a new scheduling model with learning effects in which the actual processing time of a job is a function of the total normal processing times of the jobs already processed and of the job’s scheduled position. We show that the single-machine problems to minimize makespan and total completion time are polynomially solvable. In addition, we show that the problems to minimize total weighted completion time and maximum lateness are polynomially solvable under certain agreeable conditions. Finally, we present polynomial-time optimal solutions for some special cases of the m-machine flowshop problems to minimize makespan and total completion time.  相似文献   

3.
Some scheduling problems with deteriorating jobs and learning effects   总被引:4,自引:0,他引:4  
Although scheduling with deteriorating jobs and learning effect has been widely investigated, scheduling research has seldom considered the two phenomena simultaneously. However, job deterioration and learning co-exist in many realistic scheduling situations. In this paper, we introduce a new scheduling model in which both job deterioration and learning exist simultaneously. The actual processing time of a job depends not only on the processing times of the jobs already processed but also on its scheduled position. For the single-machine case, we derive polynomial-time optimal solutions for the problems to minimize makespan and total completion time. In addition, we show that the problems to minimize total weighted completion time and maximum lateness are polynomially solvable under certain agreeable conditions. For the case of an m-machine permutation flowshop, we present polynomial-time optimal solutions for some special cases of the problems to minimize makespan and total completion time.  相似文献   

4.
Recently, Biskup [2] classifies the learning effect models in scheduling environments into two types: position-based and sum-of-processing-time-based. In this paper, we study scheduling problem with sum-of-logarithm-processing-time-based and position-based learning effects. We show that the single machine scheduling problems to minimize the makespan and the total completion time can both be solved by the smallest (normal) processing time first (SPT) rule. We also show that the problems to minimize the maximum lateness, the total weighted completion times and the total tardiness have polynomial-time solutions under agreeable WSPT rule and agreeable EDD rule. In addition, we show that m-machine permutation flowshop problems are still polynomially solvable under the proposed learning model.  相似文献   

5.
This paper provides a continuation of the idea presented by Yin et al. [Yin et al., Some scheduling problems with general position-dependent and time-dependent learning effects, Inform. Sci. 179 (2009) 2416-2425]. For each of the following three objectives, total weighted completion time, maximum lateness and discounted total weighted completion time, this paper presents an approximation algorithm which is based on the optimal algorithm for the corresponding single-machine scheduling problem and analyzes its worst-case bound. It shows that the single-machine scheduling problems under the proposed model can be solved in polynomial time if the objective is to minimize the total lateness or minimize the sum of earliness penalties. It also shows that the problems of minimizing the total tardiness, discounted total weighted completion time and total weighted earliness penalty are polynomially solvable under some agreeable conditions on the problem parameters.  相似文献   

6.
In this paper, we study a scheduling model with the consideration of both the learning effect and the setup time. Under the proposed model, the learning effect is a general function of the processing time of jobs already processed and its scheduled position, and the setup time is past-sequence-dependent. We then derive the optimal sequences for two single-machine problems, which are the makespan and the total completion time. Moreover, we showed that the weighted completion time, the maximum lateness, the maximum tardiness, and the total tardiness problems remain polynomially solvable under agreeable conditions.  相似文献   

7.
Unlike other measures of variation of job completion times considered in scheduling literature, the measure of minimizing total absolute deviation of job completiontimes (TADC) was shown to have a polynomial time solution on a single machine. It was recently shown to remain polynomially solvable when position-dependent job processing times are assumed. In this paper we further extend these results, and show that minimizing TADC remains polynomial when position-dependent processing times are assumed (i) on uniform and unrelated machines and (ii) for a bicriteria objective consisting of a linear combination of total job completion times and TADC. These extensions are shown to be valid also for the measure of total absolute differences of job waiting times (TADW).  相似文献   

8.
9.
In this paper, we introduce a single-machine scheduling problem with an exponentially time-dependent learning effect. The processing time of a job is assumed to be an exponential function of the total normal processing time of jobs already processed before it. For such a scheduling problem, we first provide the upper bound for the maximum lateness and for the total weighted completion time. Next, we show that problems with the following criteria: makespan, the total completion time, the total weighted completion time, the total earliness/tardiness penalties and the maximum lateness under some agreeable conditions, are polynomially solvable.  相似文献   

10.
This paper addresses single-machine scheduling problems under the consideration of learning effect and resource allocation in a group technology environment. In the proposed model of this paper the actual processing times of jobs depend on the job position, the group position, and the amount of resource allocated to them concurrently. Learning effect and two resource allocation functions are examined for minimizing the weighted sum of makespan and total resource cost, and the weighted sum of total completion time and total resource cost. We show that the problems for minimizing the weighted sum of makespan and total resource cost remain polynomially solvable. We also prove that the problems for minimizing the weighted sum of total completion time and total resource cost have polynomial solutions under certain conditions.  相似文献   

11.
In this paper, we introduce a group scheduling model with general deteriorating jobs and learning effects in which deteriorating jobs and learning effects are both considered simultaneously. This means that the actual processing time of a job depends not only on the processing time of the jobs already processed, but also on its scheduled position. In our model, the group setup times are general linear functions of their starting times and the jobs in the same group have general position-dependent learning effects and time-dependent deterioration. The objective of scheduling problems is to minimise the makespan and the sum of completion times, respectively. We show that the problems remain solvable in polynomial time under the proposed model.  相似文献   

12.
This paper investigates single-machine group scheduling problems with simultaneous considerations of deteriorating and learning effects to minimize the makespan and the total completion time of all jobs. The group setup time is assumed to follow a simple linear time-dependent deteriorating model. Two models of learning for the job processing time are examined in this study. We provided polynomial time solutions for the makespan minimization problems. We also showed that the total completion time minimization problems remain polynomially solvable under agreeable conditions.  相似文献   

13.
In this paper we consider the single-machine scheduling problems with the effects of learning and deterioration. By the effects of learning and deterioration, we mean that job processing times are defined by functions of their starting times and positions in the sequence. It is shown that even with the introduction of learning effect and deteriorating jobs to job processing times, single machine makespan and sum of completion times (square) minimization problems remain polynomially solvable, respectively. But for the following objective functions: the weighted sum of completion times and the maximum lateness, this paper proves that the WSPT rule and the EDD rule can construct the optimal sequence under some special cases, respectively.  相似文献   

14.
Due date assignment scheduling problems with deterministic and stochastic parameters have been studied extensively in recent years. In this paper, we consider a single machine due date assignment scheduling problem with uncertain processing times and general precedence constraint among the jobs. The processing times of the jobs are assumed to be fuzzy numbers. We first propose an optimal polynomial time algorithm for the problem without precedence constraints among jobs. Then, we show that if general precedence constraint is involved, the problem is NP-hard. Finally, we show that if the precedence constraint is a tree or a collection of trees, the problem is still polynomially solvable.  相似文献   

15.
In scheduling problems with learning effects, most of the research is based on specific learning functions. In this paper, we develop a general model with learning effects where the actual processing time of a job is not only a function of the total normal processing times of the jobs already processed, but also a function of the job’s scheduled position. In particular, it is shown that some single machine scheduling problems and m-machine permutation flowshop problems are still polynomially solvable under the proposed model. These results are significant extensions of some of the existing results on learning effects in the literature.  相似文献   

16.
In a manufacturing system workers are involved in doing the same job or activity repeatedly. Hence, the workers start learning more about the job or activity. Because of the learning, the time to complete the job or activity starts decreasing, which is known as “learning effect”. In this paper, an exponential sum-of-actual-processing-time based learning effect is introduced into single-machine scheduling. By the exponential sum-of-actual-processing-time based learning effect, we mean that the processing time of a job is defined by an exponential function of the sum-of-the-actual-processing-time of the already processed jobs. Under the proposed learning model, we show that under a sufficient condition, the makespan minimization problem, the sum of the θth (θ > 0) power of completion times minimization problem, and some special cases of the total weighted completion time minimization problem and the maximum lateness minimization problem remain polynomially solvable.  相似文献   

17.
In this paper we consider the general, no-wait and no-idle permutation flowshop scheduling problem with deteriorating jobs, i.e., jobs whose processing times are increasing functions of their starting times. We assume a linear deterioration function with identical increasing rates for all the jobs and there are some dominating relationships between the machines. We show that the problems to minimize the makespan and the total completion time remain polynomially solvable when deterioration is considered, although these problems are more complicated than their classical counterparts without deterioration.  相似文献   

18.
We consider various single machine scheduling problems in which the processing time of a job depends either on its position in a processing sequence or on its start time. We focus on problems of minimizing the makespan or the sum of (weighted) completion times of the jobs. In many situations we show that the objective function is priority-generating, and therefore the corresponding scheduling problem under series-parallel precedence constraints is polynomially solvable. In other situations we provide counter-examples that show that the objective function is not priority-generating.  相似文献   

19.
In this paper, a fuzzy bi-criteria transportation problem is studied. Here, the model concentrates on two criteria: total delivery time and total profit of transportation. The delivery times on links are fuzzy intervals with increasing linear membership functions, whereas the total delivery time on the network is a fuzzy interval with a decreasing linear membership function. On the other hand, the transporting profits on links are fuzzy intervals with decreasing linear membership functions and the total profit of transportation is a fuzzy number with an increasing linear membership function. Supplies and demands are deterministic numbers. A nonlinear programming model considers the problem using the max–min criterion suggested by Bellman and Zadeh. We show that the problem can be simplified into two bi-level programming problems, which are solved very conveniently. A proposed efficient algorithm based on parametric linear programming solves the bi-level problems. To explain the algorithm two illustrative examples are provided, systematically.  相似文献   

20.
This paper investigates flowshop scheduling problems with a general exponential learning effect, i.e., the actual processing time of a job is defined by an exponent function of the total weighted normal processing time of the already processed jobs and its position in a sequence, where the weight is a position-dependent weight. The objective is to minimize the makespan, the total (weighted) completion time, the total weighted discounted completion time, and the sum of the quadratic job completion times, respectively. Several simple heuristic algorithms are proposed in this paper by using the optimal schedules for the corresponding single machine problems. The tight worst-case bound of these heuristic algorithms is also given. Two well-known heuristics are also proposed for the flowshop scheduling with a general exponential learning effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号