首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both experimental and simulated studies of microdischarge (MD) are carried out in a dielectric barrier discharge with a pin-to-pin gap of 3.5 mm, ignited by a sinusoidal voltage with a peak voltage of 10 kV and a driving frequency of 5 kHz. Statistical results have shown that the probability of the single current pulse in the positive half-period (HP) reaches 73.6% under these conditions. Experimental results show that great luminous intensity is concentrated on the dielectric surface and the tip of the metal electrode. A 1D plasma fluid model is implemented by coupling the species continuity equations, electron energy density equations, Poisson equation, and Helmholtz equations to analyze the MD dynamics on the microscale. The simulated results are in good qualitative agreement with the experimental results. The simulated results show that the MD dynamics can be divided into three phases: the Townsend phase, the streamer propagation phase, and the discharge decay phase. During the streamer propagation phase, the electric field and electron density increase with the streamer propagation from the anode to the cathode, and their maximal values reach 625.48 Td and 2.31 × 1019 m−3, as well as 790.13 Td and 3.58 × 1019 m−3 in the positive and negative HP, respectively. Furthermore, a transient glow-like discharge is detected around the anode during the same period of streamer propagation. The formation of transient glow-like discharge is attributed to electrons drifting back to the anode, which is driven by the residual voltage in the air gap.  相似文献   

2.
Application of DBD and DBCD in SO2 Removal   总被引:2,自引:0,他引:2  
The dielectric barrier corona discharge(DBCD) in a wire-cylinder configuration and the dielectric barrier discharge(DBD) in a coaxial cylinder configuration are studied. The discharge current in DBD has a higher pulse amplitude than in DBCD. The dissipated power and the gas-gap voltage are calculated by analyzing the measured Lissajous figure. With the increasing applied voltage, the energy utilization factor for SO2 removal increases in DBCD but decreases in DBD because of the difference in their electric field distribution. Experiments of SO2 removal show that in the absence of NH3 the energy utilization factor can reach 31 g/kWh in DBCD and 39 g/kWh in DBD.  相似文献   

3.
In the present paper,we carried out a theoretical study of dielectric barrier discharge (DBD) filled with pure methane gas.The homogeneous discharge model used in this work includes a plasma chemistry unit,an electrical circuit,and the Boltzmann equation.The model was applied to the case of a sinusoidal voltage at a period frequency of 50 kHz and under a gas pressure of 600 Torr.We investigated the temporal variation of electrical and kinetic discharge parameters such as plasma and dielectric voltages,the discharge current density,electric field,deposited power density,and the species concentration.We also checked the physical model validity by comparing its results with experimental work.According to the results discussed herein,the dielectric capacitance is the parameter that has the greatest effect on the methane conversion and H2/CH4 ratio.This work enriches the knowledge for the improvement of DBD for CH4 conversion and hydrogen production.  相似文献   

4.
This paper presents the fabrication and a spectroscopic study of a stable radiofrequency dielectric barrier discharge(RF DBD) in Ar with a novel dielectric,anodic alumina,at atmospheric pressure.Dielectric electrodes are fabricated from commercially available low cost impure aluminum strips by a two-step anodization process in 0.3 M solution of oxalic acid.The discharge is found to be stable with excellent spatial uniformity for the RF input power range of 30~80 W.Excitation and rotational temperatures measured in the experiment range of 1472~3255 K and 434~484 K,respectively,as the input power changes from 30 W to 80 W.These temperature ranges are suitable for surface modification applications.  相似文献   

5.
In this work, a single Al2O3 particle packed dielectric barrier discharge (DBD) reactor with adjustable discharge gap is built, and the influences of the particle shape (ball and column) and the residual gap between the top electrode and particle on the electrical and optical characteristics of plasma are studied. Our research confirms that streamer discharge and surface discharge are the two main discharge patterns in the single-particle packed DBD reactor. The strong electric field distortion at the top of the ball or column caused by the dielectric polarization effect is an important reason for the formation of streamer discharge. The length of streamer discharge is proportional to the size of the residual gap, but the number of discharge times of a single voltage cycle shows an opposite trend. Compared to the column, a smooth spherical surface is more conducive to the formation of large and uniform surface discharges. The surface discharge area and the discharge intensity reach a maximum when the gap is equal to the diameter of the ball. All in all, the results of this study will provide important theoretical support for the establishment of the synergistic characteristics of discharge and catalysis in plasma catalysis.  相似文献   

6.
Plasma polymerized fluorocarbon (FC) films have been deposited on silicon substrates from dielectric barrier discharge (DBD) plasma of C4Fs at room temperature under a pressure of 25~125 Pa. The effects of the discharge pressure and frequency of power supply on the films have been systematically investigated. FC films with a less cross linked structure may be formed at a relatively high pressure. Increase in the frequency of power supply leads to a significant increase in the deposition rate. Static contact angle measurements show that deposited FC films have a stable, hydrophobic surface property. All deposited films show smooth surfaces with an atomic surface roughness. The relationship between plasma parameters and the properties of the deposited FC films are discussed.  相似文献   

7.
Decomposition of toluene was experimentally investigated with various dielectric barrier discharge (DBD) reactors, such as wire-cylinder, wire-plate and plate-to-plate, combined with multi-metal oxides catalyst (Mn-Ni-Co-Cu-Ox/Al2O3) loaded on the cordierite honeycomb and nickel foam, respectively. The effects of some factors including the residence time, reactor configuration and catalyst, upon the toluene destruction were studied. Results revealed that the use of in-plasma catalysis was more helpful to enhancing the DRE (destruction and removal efficiency) and reducing the O3 formation than that of either post-plasma catalysis or plasma alone. It was demonstrated that the wire-plate reactor was favorable for the oxidation reaction of toluene and the nickel foam-supported catalysts exhibited good activity.  相似文献   

8.
In this work,a two-dimensional numerical simulation of the discharge characteristics of helium plasma propagating inside a dielectric tube was performed.A trapezoidal +9 kV pulse lasting 400 ns was applied on a needle electrode set inside the dielectric tube to ignite the discharge.The discharges generated in the tubes with a variable or a constant inner diameter were investigated.The focus of this study was on clarifying the effect of the tube diameter on the discharge structure and dynamics.The comparison of the discharge characteristics generated in dielectric tubes with different diameters was carried out.It was shown that the tube diameter plays a significant role in discharge behavior of plasma propagating in the dielectric tube.  相似文献   

9.
A coaxial dielectric barrier discharge(DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond(ns)pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 ℃ and 64.3 ℃ after 900 s operation, respectively.The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs,reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.  相似文献   

10.
Modification of the surface properties of polyethylene (PE) films is studied using air dielectric barrier discharge at atmospheric pressure. The treated samples are examined by Water contact angle measurements, Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). With the increase in treating time, the water contact angle changes from 93.2° before treatment to a minimum of 53.3° after a treatment for 50 s. Both ATR and XPS results show some oxidized species are introduced into the sample surface by the plasma treatment and the tendency of the water contact angle with the treating time is the same as that of oxygen concentration on the treated sample surface. SEM result shows the surface roughness of PE samples increases with the treatment time increasing.  相似文献   

11.
Fast photography and optical emission spectroscopy are implemented in a 5 mm neon gap dielectric barrier discharge (DBD) at atmospheric pressure with quartz glass used as the dielectric layer. Results show that it starts with a Townsend discharge and ends at a sub-normal glow discharge in neon DBD. Based on the Townsend discharge, the first ionization coefficient of neon is measured. The measurements are consistent with those at low pressure. Optical emission spectroscopy indicates that the spectra are mainly composed of atomic lines of neon, molecular bands and molecular ion bands originating from inevitable gas impurities (mainly nitrogen). Moreover, spectral lines emitted from atomic neon corresponding to the transitions (2p5 3p → 2p5 3s) are predominant. Although the second positive system of N2(C3Πu → B3Πg) is observed, their intensities are too weak compared with neon's spectrum. The molecular nitrogen ion line of 391.4 nm is observed. It reveals that Penning ionization between high energy neon excited states and the inevitable gas impurities plays an important role in the value of the α coefficient.  相似文献   

12.
A comparative study of radio-frequency atmospheric pressure glow discharge(rf APGD)generated in helium with and without dielectric electrodes to investigate the effect of electrodes insulation on electrical features of APGD is presented. In the α mode, both the rf APGDs remain volumetric, stable and uniform. In the γ mode, the APGD without dielectric electrodes shrinks into a constricted plasma column whereas APGD with dielectric electrodes remains stable and retains the same volume without plasma constriction even at higher densities of discharge current. A comparison of electrical features of both rf APGDs in normal and abnormal glow discharge regimes is presented. In both APGDs with and without dielectric electrodes,impedance measurements have been performed and compared with equivalent circuit models.The measured impedance data is found to be in good agreement with simulated data.  相似文献   

13.
《等离子体科学和技术》2016,18(10):1005-1011
The surface dielectric barrier discharge(SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.  相似文献   

14.
With the rapid increase in the number of cars and the development of industry, nitrogen oxide(NO_x)emissions have become a serious and pressing problem. This work reports on the development of a water-cooled dielectric barrier discharge reactor for gaseous NOxremoval at low temperature. The characteristics of the reactor are evaluated with and without packing of the reaction tube with 2 mm diameter dielectric beads composed of glass, ZnO, MnO_2, ZrO_2, or Fe_2O_3. It is found that the use of a water-cooled tube reduces the temperature, which stabilizes the reaction, and provides a much greater NO conversion efficiency(28.8%) than that obtained using quartz tube(14.1%) at a frequency of 8 k Hz with an input voltage of 6.8 k V. Furthermore,under equivalent conditions, packing the reactor tube with glass beads greatly increases the NO conversion efficiency to 95.85%. This is because the dielectric beads alter the distribution of the electric field due to the influence of polarization at the glass bead surfaces, which ultimately enhances the plasma discharge intensity. The presence of the dielectric beads increases the gas residence time within the reactor. Experimental verification and a theoretical basis are provided for the industrial application of the proposed plasma NO removal process employing dielectric bead packing.  相似文献   

15.
To improve the utilization rate of plasma active species,in this study,a closed non-uniform air gap is formed by a flowing water film electrode and a sawtooth insulating dielectric layer to realize the diffuse glow discharge in the atmosphere.Firstly,the electric field distribution characteristics of non-uniform air gap in the sawtooth dielectric layer are studied,and the influence of aspect ratio on the characteristics of diffuse discharge plasma is discussed.Subsequently,the effects of wire mesh,the inclination angle of the dielectric plate,and liquid inlet velocity on the flow characteristics of the water film electrode are analyzed.The results show that the non-uniform electric field distribution formed in the sawtooth groove can effectively inhibit the filamentous discharge,and the 1 mm flowing water film is directly used as the electrode,and high-active plasma is formed directly on the lower surface of the water film.In addition,a plasma flowing water treatment device is built to treat the methyl orange solution and observe its decolorization effect.The experimental results show that after 50 min of treatment,the decolorization rate of the methyl orange solution reaches 96%,which provides a new idea for industrial applications of wastewater treatment.  相似文献   

16.
The dielectric barrier discharge (DBD) and pulse corona discharge(POD) plasmagenerator was used to remove NHa, H2S, C7H8 etc. from atmosphere. The principle and charac-teristic of the two ways was discussed in the article. The test shows the result of PCD is betterthan that of DBD.  相似文献   

17.
The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numerical simulation. Experiments have been carried out to deter- mine the spatial distribution of electric field by using FEM software and the electronic excitation temperature in discharge by calculating ratio of two relative intensities of atomic spectral lines. In this work, we choose seven Ar atomic emission lines at 415.86 nm [(3s^23p^5)5p →(3s^23p^5)4s] and 706.7 nm, 714.7 nm, 738.4 nm, 751.5 nm, 794.8 nm and 800.6 nm [(3s^23p^5)4p → (3s^23p^5)4s] to estimate the excitation temperature under a Boltzmann approximation. The average electron energy is evaluated in each discharge by using line ratio of 337.1 nm (N2(C^3Пu →B3Пg)) to 391.4 nm (N2^+(B2 ∑u^+→ ∑g^+)). Furthermore, variations of the electronic excitation tempera- ture are presented versus dielectric thickness and dielectric materials. The discharge is stable and uniform along the axial direction, and the electronic excitation temperature at the edge of the copper electrode is the largest. The corresponding average electron energy is in the range of 1.6- 5.1 eV and the electric field is in 1.7-3.2 MV/m, when the distance from copper electrode varies from 0 cm to 6 cm. Moreover, the electronic excitation temperature with a higher permittivity leads to a higher dissipated electrical power.  相似文献   

18.
Plasma-neutral gas dynamics is computationally investigated in a miniaturized microthruster that encloses Ar and contains dielectric material sandwiched between two metal plates using a two-dimensional plasma mode. Spatial and temporal plasma properties are investigated by solving the Poisson equation with the conservation equations of charged and excited neutral plasma species using the COMSOL Multiphysics 4.2b. The microthruster property is found to depend on the secondary electron emission coefficient. The electrohydrodynamic force(EHD) is calculated and found to be significant in the sheath area near the dielectric layer and is found to affect gas flow dynamics including the Ar excimer formation and density. The effects of pressure and secondary emission coefficient are discussed. The plasma characteristics are affected by small changes in the secondary electron emission coefficient, which could result from the dielectric erosion and aging, and is found to affect the electrohydrodynamic force produced when the microthruster is used to produce thrust for a small spacecraft.  相似文献   

19.
Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment, The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CHa and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly.  相似文献   

20.
This work reports the experimental results on the characteristics of radio frequency dielectric barrier N2 /Ar discharges.Depending on the nitrogen content in the feed gas and the input power,the discharge can operate in two diferent modes: a homogeneous glow discharge and a constricted discharge.With increasing input power,the number of discharge columns increases.The discharge columns have starlike structures and exhibit symmetric self-organized arrangement.Optical emission spectroscopy was performed to estimate the plasma temperature.Spatially resolved gas temperature measurements,determined from NO emission rotational spectroscopy were taken across the 4.4 mm gap filled by the discharge.Gas temperature in the middle of the gas gap is lower than that close to the electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号