首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 510 毫秒
1.
Top-emitting yellow light polymer light-emitting diodes (PLEDs) were fabricated on the FR4 board for future application in optical interconnects. A 100 μm thick glass plate with sputtered Ag films on the back side for light reflection was bonded to the board for smooth surface. The PLED had a structure of indium tin oxide /poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate)/phenyl substituted polypa raphenylene-vinylene/Ba/Ag and reached the brightness of 4528 cd/m2 with a corresponding current efficiency of 7 cd/A. A small AC signal imposed onto a DC bias was employed to characterize the electroluminescence delay time and hole mobility in the PDY-132 super yellow films.  相似文献   

2.
A lot of research, mostly using electron‐injection layers (EILs) composed of alkali‐metal compounds has been reported with a view to increase the efficiency of solution‐processed organic light‐emitting devices (OLEDs). However, these materials have intractable properties, such as a strong affinity for moisture, which cause the degradation of OLEDs. Consequently, optimal EIL materials should exhibit high electron‐injection efficiency as well as be stable in air. In this study, polymer light‐emitting devices (PLEDs) based on the commonly used yellow‐fluorescence‐emitting polymer F8BT, which utilize poly(diallyldimethylammonium)‐based polymeric ionic liquids, are experimentally and analytically investigated. As a result, the optimized PLED employing an EIL comprising poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (poly(DDA)TFSI), which is expected to display good moisture resistance because of water repellency of fluorocarbon groups, exhibits excellent storage stability in air and electroluminescence performance with a low turn‐on voltage of 2.01 V, maximum external quantum efficiency of 9.00%, current efficiency of 30.1 cd A?1, and power efficiency of 32.4 lm W?1. The devices with poly(DDA)TFSI show one of the highest efficiencies as compared to the reported standard PLEDs. Moreover, poly(DDA)TFSI is applied as a hole‐injection layer (HIL). The optimized PLED using poly(DDA)TFSI as the HIL exhibits performances comparable to those of a device that uses a conventional poly(3,4‐ethylenedioxy‐thiophene):poly(4‐styrenesulfonate) HIL.  相似文献   

3.
Laser-induced forward transfer (LIFT) has been used to print 0.6 mm × 0.5 mm polymer light-emitting diode (PLED) pixels with poly[2-methoxy, 5-(2-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) as the light-emitting polymer. The donor substrate used in the LIFT process is covered by a sacrificial triazene polymer (TP) release layer on top of which the aluminium cathode and functional MEH-PPV layers are deposited. To enhance electron injection into the MEH-PPV layer, a thin poly(ethylene oxide) (PEO) layer on the Al cathode or a blend of MEH-PPV and PEO was used. These donor substrates have been transferred onto both plain indium tin oxide (ITO) and bilayer ITO/PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) blend) receiver substrates to create the PLED pixels. For comparison, devices were fabricated in a conventional manner on ITO substrates coated with a PEDOT:PSS hole-transporting layer. Compared to multilayer devices without PEO, devices with ITO/PEDOT:PSS/MEH-PPV:PEO blend/Al architecture show a 100 fold increase of luminous efficiency (LE) reaching a maximum of 0.45 cd/A for the blend at a brightness of 400 cd/m(2). A similar increase is obtained for the polymer light-emitting diode (PLED) pixels deposited by the LIFT process, although the maximum luminous efficiency only reaches 0.05 cd/A for MEH-PPV:PEO blend, which we have attributed to the fact that LIFT transfer was carried out in an ambient atmosphere. For all devices, we confirm a strong increase in device performance and stability when using a PEDOT:PSS film on the ITO anode. For PLEDs produced by LIFT, we show that a 25 nm thick PEDOT:PSS layer on the ITO receiver substrate considerably reduces the laser fluence required for pixel transfer from 250 mJ/cm(2) without the layer to only 80 mJ/cm(2) with the layer.  相似文献   

4.
Efficient organic solar cells based on the blends of poly (3-hexylthiophene) (P3HT):fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) composites have been fabricated by using the sputtered amorphous chromium oxide (ACO) film on fluorine-doped tin oxide (FTO) coated glass substrates as a hole-transporting layer (HTL). Through ACO layer sputtering temperature, film thickness and oxygen flow ratio optimization, the highest power conversion efficiency of 3.28% of FTO/ACO/P3HT:PCBM/Al solar cells on glass has been achieved under AM1.5G 100 mW/cm2 illumination. It is found that the device with 10 nm thick ACO sputtered at 473 K and oxygen flow ratio f(O2) (O2/O2 + Ar) = 40% shows the best photovoltaic properties. The photovoltaic properties in these devices are discussed in terms of the band diagrams and series resistance of the devices, and characteristics of ACO HTL. It is concluded that ACO is a suitable alternative to poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) as a HTL.  相似文献   

5.
Jae Wook Kwon 《Thin solid films》2010,518(22):6339-6342
The hole ohmic properties of the MoOx-doped NPB layer have been investigated by analyzing the current density-voltage properties of hole-only devices and by assigning the energy levels of ultraviolet photoemission spectra. The result showed that the performance of organic light-emitting diodes (OLEDs) is markedly improved by optimizing both the thickness and the doping concentration of a hole-injecting layer (HIL) of N, N′-diphenyl-N, N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB) doped with molybdenum oxide (MoOx) which was inserted between indium tin oxide (ITO) and NPB. For the doping concentration of above 25%, the device composed of a glass/ITO/MoOx-doped NPB (100 nm)/Al structure showed the excellent hole ohmic property. The investigation of the valence band structure revealed that the p-type doping effects in the HTL layer and the hole concentration increased at the anode interfaces cause the hole-injecting barrier lowering. With both MoOx-doped NPB as a hole ohmic contact and C60/LiF as an electron ohmic contact, the device, which is composed of glass/ITO/MoOx-doped NPB (25%, 5 nm)/NPB (63 nm)/Alq3 (37 nm)/C60 (5 nm)/LiF (1 nm)/Al (100 nm), showed the luminance of about 58,300 cd/m2 at the low bias voltage of 7.2 V.  相似文献   

6.
We investigated an inverted organic photovoltaic device structure in which a densely packed ~ 100 nm thin TiO2 layer on fluorine doped conducting glass serves as anode and poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/Au layer on top of the active layer serves as cathode. The active layer is comprised of a blend of poly(3-hexylthiopene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The rectification behavior of such a device is improved significantly and injection losses are minimized compared to devices without any compact TiO2 layer. Moreover, nanostructured P3HT active layer was achieved in-situ by spin coating concentrated pure P3HT and P3HT:PCBM blend and solar cell performances on thickness of the active layer were also investigated. For the inverted solar cells constructed with different concentrations of P3HT and PCBM keeping the P3HT:PCBM ratio 1:0.8 (wt.%), the highest short circuit current and efficiency was observed when the P3HT and PCBM concentration was equal to 1.5 (wt.%) and 1.2 (wt.%) respectively. This leads to highly stable and reproducible power conversion efficiency above 3.7% at 100 mW/cm2 light intensity under AM 1.5 conditions.  相似文献   

7.
The spectroscopic, electrochemical and electroluminescent properties of three binuclear Ru(II) complexes with different length of flexible bridges were investigated. The single-layer electroluminescent devices with configuration of indium-tin oxide/Ru complex (~ 100 nm)/Ga:In were found to give a turn-on voltages as low as 2.3 V, a maximum luminance up to 310 cd/m2 at a bias voltage of 5.8 V, and low delay times less than 2 s.  相似文献   

8.
Pulsed laser deposition was used to deposit high-quality indium tin oxide (ITO) thin solid films on polyethylene napthalate (PEN) flexible display substrates. The electrical, optical, microstructural, mechanical and adhesive properties of the functional thin layer were investigated as a function of a narrow range of background oxygen gas pressure at room temperature, which is the most desirable thermal condition for growing transparent conducting oxides on flexible display polymer substrates. ITO films (240 ± 35 nm thick) deposited on PEN at room temperature in the range of 0.33 to 2.66 Pa background oxygen pressure are observed to exhibit low electrical resistivity (~ 10− 4 Ω cm) and high optical transmission (~ 90%). Electromechanical uniaxial tensile testing, of the hybrid thin structures, results in crack onset nominal strains of around 2%. The ITO surface adhesion reaches a maximum at 1.33 Pa deposition pressure.  相似文献   

9.
Top-emitting organic light-emitting devices (TOLEDs) with high efficiency and low driving voltage using silver-silver microcavity structure were demonstrated. With tris(8-hydroquinoline) aluminum as emission layer, the Ag-Ag based TOLED showed a maximum luminous efficiency of 9.21 cd/A which was much higher than conventional Ag-Al/Ag based TOLED (4.21 cd/A) and corresponding bottom-emitting OLED (3.77 cd/A). The Ag-Ag based TOLED also exhibited low driving voltage and thereby an enhanced power efficiency of 4.25 lm/W (at 40 mA/cm2). The excellent performance of Ag-Ag based TOLED was attributed to the significant microcavity effect and efficient carrier injection from Ag electrode.  相似文献   

10.
In this study, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] end capped with polyhedral oligomeric silsesquioxanes (MEH-PPV-POSS): cadmium sulfide selenide quantum dots (CdS0.75Se0.25 QDs) nanocomposites based OLEDs were fabricated. By the addition of CdS0.75Se0.25 QDs into the polymer active layer, a considerable enhancement was observed in terms of hole and electron injection in devices. Additionally, the presence of QDs reduced the interchain interaction of polymer that resulted in narrower electroluminescence (EL) spectrum. The device structure of ITO/PEDOT: PSS/MEH-PPV-POSS: 25 wt% CdS0.75Se0.25/Ca (40 nm)/Al demonstrated the best performance with a brightness of 8672 cd/m2 at 10 V, current efficiency of 2.5 cd/A at 8 V, and an EQE of 0.55% at 150 mA/cm2.  相似文献   

11.
Efficient white polymer light-emitting diodes based on the polymer blend of poly(2-(4′-(diphenylamino)phenylenevinyl)-1,4-phenylene-alt-9,9-n-dihexylfluorene-2,7-diyl) doped with poly{2-[3′,5′-bis(2?-ethylhexyloxy) benzyloxy]-1,4-phenylenevinylene}-co-poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) were fabricated. The electroluminescence (EL) spectrum is easily controlled by changing the dopant concentration. A white light emission was realized on the device with the dopant concentration of 0.194‰ and the emission light is less sensitive to the applied voltage in a wide voltage range. The maximum luminance and the maximum EL efficiency of the single-layer device were 2330 cd/m2 and 0.29 cd/A, respectively. By introducing an Alq3 layer as an electron transporting and hole blocking layer, the overall performance of the double layer device was dramatically improved, the maximum luminance and the maximum EL efficiency reached 3300 cd/m2 and 2.37 cd/A, respectively.  相似文献   

12.
Transparent conducting multilayer structured electrode of a few nm Ag layer embedded in tin oxide thin film SnOx/Ag/SnOx was fabricated on a glass by RF magnetron sputtering at room temperature. The multilayer of the SnOx(40 nm)/Ag(11 nm)/SnOx(40 nm) electrode shows the maximum optical transmittance of 87.3% at 550 nm and a quite low electrical resistivity of 6.5 × 10− 5 Ω cm, and the corresponding figure of merit (T10/RS) is equivalent to 3.6 × 10− 2 Ω− 1. A normal organic photovoltaic (OPV) structure of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/polythiophene:phenyl-C60-butyric acid methyl ester/Al was fabricated on glass/SnOx/Ag/SnOx to examine the compatibility of OPV as a transparent conducting electrode. Measured characteristic values of open circuit voltage of 0.62 V, saturation current of 8.11 mA/cm2 and fill factor of 0.54 are analogous to 0.63 V, 8.37 mA/cm2 and 0.58 of OPV on commercial glass/indium tin oxide (ITO) respectively. A resultant power conversion efficiency of 2.7% is also very comparable with the 3.09% of the same OPV structure on the commercial ITO glass as a reference, and which reveals that SnOx/Ag/SnOx can be appropriate to OPV solar cells as a sound transparent conducting electrode.  相似文献   

13.
In this study, solution-processed nickel oxide (NiO) thin film was investigated as a hole transport layer on anode to improve the performance of bulk heterojunction solar cell based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). We fabricated NiO thin film without any vacuum-related process. Characterization of the NiO film under this study shows that it has maximum transmittance of 93.22% and bandgap of 3.84 eV which are proper for solar cell. Insertion of the NiO layer affords to realize enhanced power conversion efficiency of 1.97% and fill factor of 52.11% showing improvement over existing cells. In addition, NiO suggests one solution of minimizing conventional problems of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) such as interfacial power losses, corrosion of indium tin oxide layer, and degradation of the devices. The value of such hole transporting and electron blocking properties is clearly demonstrated and could be applicable to other organic photovoltaics.  相似文献   

14.
A series of phosphorescent Ir(III) complexes 1-4 were synthesized based on aryl(6-arylpyridin-3-yl)methanone ligands, and their photophysical and electroluminescent properties were characterized. Multilayer devices with the configuration, Indium tin oxide/4,4′,4″-tris(N-(naphthalene-2-yl)-N-phenyl-amino)triphenylamine (60 nm)/4,4′-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (20 nm)/Ir(III) complexes doped in N,N′-dicarbazolyl-4,4′-biphenyl (30 nm, 8%)/2,9-dimethyl-4,7-diphenyl-phenathroline (10 nm)/tris(8-hydroxyquinoline)-aluminum (20 nm)/lithium quinolate (2 nm)/ Al (100 nm), were fabricated. Among these, the device employing complex 2 as a dopant exhibited efficient red emission with a maximum luminance, luminous efficiency, power efficiency and quantum efficiency of 16200 cd/m2 at 14.0 V, 12.20 cd/A at 20 mA/cm2, 4.26 lm/W and 9.26% at 20 mA/cm2, respectively, with Commission Internationale de l'Énclairage coordinates of (0.63, 0.37) at 12.0 V.  相似文献   

15.
An effective electron-injection layer (EIL) is crucial to efficient polymer light-emitting diodes (PLEDs) with high work-function metal as cathode. This work presents the use of water/alcohol soluble poly(vinyl alcohol) (PVA), especially doped with alkali metal salts, as a highly effective EIL to fabricate efficient multilayer PLEDs, allowing the use of stable aluminum as the cathode. Using neat PVA as EIL, the maximum brightness and maximum current efficiency of the device [ITO/PEDOT:PSS/SY/PVA/Al(90 nm)] were significantly enhanced to 5518 cd/m2 and 2.64 cd/A (from 395 cd/m2 and 0.06 cd/A without the EIL) due to promoted electron-injection and hole-blocking. The device performance is further enhanced by doping the PVA with alkali metal salts (M2CO3 or CH3COOM; M: Na, K, Cs), and the enhancement is increased with increasing dopant concentration. Particularly, the PVA doped with 30 wt% alkali metal carbonates revealed the best performance (20214–25163 cd/m2, 5.83–6.83 cd/A). This has been attributed to improved electron-injection from aluminum cathode, which has been confirmed by the corresponding increase in the open-circuit voltages (V oc) obtained from photovoltaic measurements. Current results indicate that commercially available PVA are promising electron-injection layer for PLEDs when doped with appropriate alkali metal salts.  相似文献   

16.
An inorganic/organic vertical heterojunction diode has been demonstrated with p-type Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) deposited by spin coating on n-type Ga-doped ZnO (GZO) thin films. Transparent conducting GZO thin films are deposited on glass substrate by rf-magnetron sputtering. Electrical properties of GZO thin films are investigated depending on the processing temperatures. The resistivity, mobility and carrier concentration of the GZO thin films deposited at processing temperatures of 500 °C are measured to be about 3.6 × 10−4 Ω cm, 23.8 cm2/Vs and 7.1 × 1020 cm3, respectively. The root mean square surface roughness of the GZO thin films is calculated to be ~ 0.9 nm using atomic force microscopy. Current-voltage characteristics of the n-GZO/p-PEDOT:PSS heterojunction diode present rectifying operation. Half wave rectification is observed with the maximum output voltage of 1.85 V at 1 kHz. Low turn-on voltage of about 1.3 V is obtained and the ideality factor of the n-GZO/p-PEDOT:PSS diode is derived to be about 1.8.  相似文献   

17.
The highly-doped buried layer (carrier concentration of ~ 1019 cm− 3) in an amorphous indium-gallium-zinc oxide (a-IGZO) channel layer of thin film transistor (TFT) led to dramatic improvements in the performance and prolonged bias-stability without any high temperature treatment. These improvements are associated with the enhancement in density-of-states and carrier transport. The channel layer is composed of Ga-doped ZnO (GZO) and a-IGZO layers. Measurements performed on GZO-buried a-IGZO (GB-IGZO) TFTs indicate enhanced n-channel active layer characteristics, such as Vth, μFE, Ioff, Ion/off ratio and S.S, which were enhanced to 1.2 V, 10.04 cm2/V·s, ~ 10−13A, ~ 107 and 0.93 V/decade, respectively. From the result of simulation, a current path was well defined through the surface of oxide active layer especially in GB-IGZO TFT case because the highly-doped buried layer plays the critical role of supplying sufficient negative charge density to compensate the amount of positive charge induced by the increasing gate voltage. The mechanism underlying the high performance and good stability is found to be the localization effect of a current path due to a highly-doped buried layer, which also effectively screens the oxide bulk and/or back interface trap-induced bias temperature instability.  相似文献   

18.
Thin film laminates composed of sputtered indium zinc oxide and silver, optimized for conductance and transparency, were tested for water vapor permeation as well as mechanical durability in tension. The ~ 82 nm thick optimized indium-zinc-oxide/silver/indium-zinc-oxide (IZO/Ag/IZO) films were > 80% transparent in the visible range (400 nm-700 nm) with measured sheet resistances less than 5 Ω/sq. The water vapor permeation measurements using Ca test methods at several temperature/ humidity conditions indicated that the addition of the thin Ag layer provided little improvement relative to a single indium-zinc-oxide (IZO) layer of similar thickness. However, the critical strain in bending tests for IZO/Ag/IZO films was improved compared to IZO films. The modulus (E ~ 113 GPa), hardness (H ~ 7 GPa), fracture toughness (KIC ~ 1.1 MPa⋅m0.5), and interfacial shear (“adhesion”) (τc ~ 16 MPa) of/related to IZO, and measured by nanoindention are consistent with other brittle ceramic thin film materials.  相似文献   

19.
All present designs of perovskite light‐emitting diodes (PeLEDs) stem from polymer light‐emitting diodes (PLEDs) or perovskite solar cells. The optimal structure of PeLEDs can be predicted to differ from PLEDs due to the different fluorescence dynamics and crystallization between perovskite and polymer. Herein, a new design strategy and conception is introduced, “insulator–perovskite–insulator” (IPI) architecture tailored to PeLEDs. As examples of FAPbBr3 and MAPbBr3, it is experimentally shown that the IPI structure effectively induces charge carriers into perovskite crystals, blocks leakage currents via pinholes in the perovskite film, and avoids exciton quenching simultaneously. Consequently, as for FAPbBr3, a 30‐fold enhancement in the current efficiency of IPI‐structured PeLEDs compared to a control device with poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) as hole‐injection layer is achieved—from 0.64 to 20.3 cd A?1—while the external quantum efficiency is increased from 0.174% to 5.53%. As the example of CsPbBr3, compared with the control device, both current efficiency and lifetime of IPI‐structured PeLEDs are improved from 1.42 and 4 h to 9.86 cd A?1 and 96 h. This IPI architecture represents a novel strategy for the design of light‐emitting didoes based on various perovskites with high efficiencies and stabilities.  相似文献   

20.
All‐solution‐processed pure formamidinium‐based perovskite light‐emitting diodes (PeLEDs) with record performance are successfully realized. It is found that the FAPbBr3 device is hole dominant. To achieve charge carrier balance, on the anode side, PEDOT:PSS 8000 is employed as the hole injection layer, replacing PEDOT:PSS 4083 to suppress the hole current. On the cathode side, the solution‐processed ZnO nanoparticle (NP) is used as the electron injection layer in regular PeLEDs to improve the electron current. With the smallest ZnO NPs (2.9 nm) as electron injection layer (EIL), the solution‐processed PeLED exhibits a highest forward viewing power efficiency of 22.3 lm W?1, a peak current efficiency of 21.3 cd A?1, and an external quantum efficiency of 4.66%. The maximum brightness reaches a record 1.09 × 105 cd m?2. A record lifetime T50 of 436 s is achieved at the initial brightness of 10 000 cd m?2. Not only do PEDOT:PSS 8000 HIL and ZnO NPs EIL modulate the injected charge carriers to reach charge balance, but also they prevent the exciton quenching at the interface between the charge injection layer and the light emission layer. The subbandgap turn‐on voltage is attributed to Auger‐assisted energy up‐conversion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号