首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
With the aim of protecting drinking water sources in rural regions, pilot-scale subsurface water flow (SSF) and free water surface flow (FWS) constructed wetland systems were evaluated for removal efficiencies of nitrogenous pollutants in tertiary stage treated wastewaters (effluent from the Pasak?y biological nutrient removal plant). Five different hydraulic application rates and emergent (Canna, Cyperus, Typhia sp., Phragmites sp., Juncus, Poaceae, Paspalum and Iris) and floating (Pistia, Salvina and Lemna) plant species were assayed. The average annual NH4-N, NO3-N and organic-N treatment efficiencies were 81, 40 and 74% in SSFs and 76, 59 and 75% in FWSs, respectively. Two types of the models (first-order plug flow and multiple regression) were tried to estimate the system performances. Nitrification, denitrification and ammonification rate constants (k20) values in SSF and FWS systems were 0.898 d-1 and 0.541 d(-1), 0.486 d(-1) and 0.502 d(-1), 0.986 d(-1) and 0.908, respectively. Results show that the first-order plug flow model clearly estimates slightly higher or lower values than observed when compared with the other model.  相似文献   

2.
A pilot scale treatment system was established in 2002 at the Laflèche Landfill in Eastern Ontario, Canada. The system consists of a series of treatment steps: a stabilisation basin (10,000 m3), a woodland peat trickling filter (5,200 m2), a subsurface flow constructed wetland planted in Phragmites sp. (2,600 m2), a surface flow constructed wetland planted in Typha sp. (3,600 m2) and a polishing pond (3,600 m2). The system operates from May to December with leachate being recycled within the landfill during the winter months. Hydraulic loading was increased three-fold over four operating seasons with nitrogen and organic mass loading increasing six-fold. Excellent removal efficiencies were observed with 93% BOD5, 90% TKN and 97% NH4-N removed under the highest loading conditions. Almost complete denitrification was observed throughout the treatment system with NO3-N concentrations never exceeding 5mg L(-1). The peat filter reached treatment capacity at a hydraulic loading of 4cm d(-1) and organic loading rate of 42 kg BOD ha(-1) d(-1), which is consistent with design criteria for vertical flow wetland systems and intermittent sand filters, The first order plug flow kinetic model was effective at describing TKN and ammonium removal in the SSF and FWS wetlands when background concentrations were taken into account. Ammonium removal k-values were consistent with the literature at 52.6 and 57.7 yr(-1) for the SSF and FWS wetlands, respectively, while TKN k-values at 6.9 and 7.7 yr(-1) were almost an order of magnitude lower than literature values, suggesting that leachate TKN could contain refractory organics not found in domestic wastewater.  相似文献   

3.
为提高表面流人工湿地对低污染水的生态净化效率,对人工湿地中湿生植物的组成进行比选研究,设置8个由不同湿生植物(包括挺水、沉水和浮叶植物)组成的表面流人工湿地,比较其净化尾水氮磷效果。结果表明:挺水植物圆币草(Hydrocotyle verticillata)和大聚藻(Myriophyllum aquaticum)组合的表面流人工湿地净化尾水氮磷效果最好,其人工湿地对TN、NO-3-N和NH3-N的平均去除率分别为68.6%、62.6%和78.2%,对TP和溶解性无机磷(DIP)的平均去除率分别为64.5%和80%。浮叶植物睡莲(Nymphaea L.)人工湿地去除氮磷能力次之,TN、NO-3-N、NH3-N、TP和DIP平均去除率分别为55%、55.2%、63.3%、56.1%和64.7%,体现一定的污染物去除潜力。沉水植物苦草[Vallisneria natans(Lour.)Hara]在与圆币草等共存净化尾水过程中逐渐失去优势种地位。而由黄菖蒲(Iris pseudacorus L.)和再力花(Thalia dealbata)等挺水植物构建的表面流人工湿地,虽然生物量高,但其氮磷去除效果较差,尤其是再力花人工湿地对TN、NO-3-N和NH3-N平均去除率仅在18%~36.2%之间,对TP和DIP平均去除率也分别只有41.5%和38.7%。因此,采用圆币草和大聚藻组合构建的表面流人工湿地能更有效净化污水处理厂尾水中氮磷,对TN的去除尤为高效,能有效提升尾水水质。  相似文献   

4.
Domestic wastewater is a significant source of nitrogen and phosphorus, which cause lake eutrophication. Among the wastewater treatment technologies, constructed wetlands are a promising low-cost means of treating point and diffuse sources of domestic wastewater in rural areas. However, the sustainable operation of constructed wetland treatment systems depends upon a high rate conversion of organic and nitrogenous loading into their metabolic gaseous end products, such as N2O and CH4. In this study, we examined and compared the performance of three typical types of constructed wetlands: Free Water Surface (FWS), Subsurface Flow (SF) and Vertical Flow (VF) wetlands. Pollutant removal efficiency and N2O and CH4 emissions were assessed as measures of performance. We found that the pollutant removal rates and gas emissions measured in the wetlands exhibited clear seasonal changes, and these changes were closely associated with plant growth. VF wetlands exhibited stable removal of organic pollutants and NH3-N throughout the experiment regardless of season and showed great potential for CH4 adsorption. SF wetlands showed preferable T-N removal performance and a lower risk of greenhouse gas emissions than FWS wetlands. Soil oxidation reduction potential (ORP) analysis revealed that water flow structure and plant growth influenced constructed wetland oxygen transfer, and these variations resulted in seasonal changes of ORP distribution inside wetlands that were accompanied by fluctuations in pollutant removal and greenhouse gas emissions.  相似文献   

5.
In this study, two types of industrial wastewater, oil-refining and steel-milling, were selected for investigating their feasibility of treatment by mesocosm constructed wetland systems. The secondly treated effluents from the wastewater treatment plants were directly discharged into the systems controlled at different flow rates. Three wetland mesocosms were installed in the two industries: mesocosms A and B were in the oil refinery, and mesocosm C was in the steel mill. The substratum media used in wetland systems were sand (mesocosm A) and gravel (mesocosms B and C), while the vegetation types selected were reeds (mesocosms A and B) and mixed species of reeds and cattails (mesocosm C). The flow regimes were controlled as free water surface (FWS) and subsurface flow (SSF) for the sand- and gravel-beds, respectively. According to the experimental results, we found that the system treating oil-refining wastewater performed better than that treating steel-milling wastewater learned by comparing the removal efficiencies of COD, total N and total P. In addition, it was found that for oil-refining wastewater treatments, the SSF wetland system (mesocosm B) performed better than FWS (mesocosm A) wetland system when comparing both of their removal of pollutants and growth of vegetation. Besides, the effluents from these two industrial wetland treatment systems might be reclaimed and reused for boiler water, cooling, cleaning and miscellaneous purposes in industries. Further treatments are required if the constructed wetland effluents are thought about being reused for processing in industries.  相似文献   

6.
In South Sweden, free water surface wetlands have been built to treat wastewater from municipal wastewater treatment plants. Commonly, nitrogen removal has been the prime aim, though a significant removal of tot-P and BOD7 has been observed. In this study, performance data for 3-8 years from four large (20-28 ha) FWS wetlands have been evaluated. Two of them receive effluent from WWTP with only mechanical and chemical treatment. At the other two, the wastewater has also been treated biologically resulting in lower concentrations of BOD7 and NH4+-N. The wetlands performed satisfactorily and removed 0.7-1.5 ton N ha(-1) yr(-1) as an average for the time period investigated, with loads between 1.7 and 6.3 ton N ha(-1)yr(-1). Treatment capacity depended on the pre-treatment of the water, as reflected in the k20-values for N removal (first order area based model). In the wetlands with no biological pre-treatment, the k20-values were 0.61 and 1.1 m month(-1), whereas for the other two they were 1.7 and 2.5 m month(-1). P removal varied between 10 and 41 kg ha(-1) yr(-1), and was related to differences in loads, P speciation and to the internal cycling of P in the wetlands.  相似文献   

7.
利用芦苇和砾石构建太阳能曝气人工垂直潜流湿地处理生活污水。设定水力负荷400 mm/d,气水比10∶1,当进水氨氮(NH4-N)、总氮(TN)、溶解性反应磷(SRP)和总磷(TP)平均浓度为5.14,7.56,0.40,0.53 mg/L时,引入太阳能曝气后,各自的平均去除率分别提高24.8%,9.4%,15.7%和11.5%。随着气温下降和进水浓度降低,湿地微生物脱氮除磷能力下降,曝气对改善生活污水氮磷去除作用不显著。对试验系统而言,太阳能曝气湿地基本建设费用是无曝气湿地的2.85倍;但以20 a运行为基础折算出的污水处理费比无曝气湿地仅高0.02元/m3。综上,从污染去除性能和污水长期处理费用来看,太阳能曝气湿地在生活污水处理方面具有较好的技术经济优势。  相似文献   

8.
北方某人工湿地净化能力分析   总被引:1,自引:1,他引:0  
在对北方某人工湿地长期观测取得的大量详尽数据的基础上,分析了人工湿地系统总体净化能力和潜流人工湿地水质动态变化特征。结果表明:该人工湿地示范工程对水质净化效果较为明显,对各类污染物的去除率平均可达40%;潜流人工湿地可对污水进行深度处理,对BOD5、NH4-N的去除效果最好,去除率为80%~90%,对NO3-N、TN的去除效果较好,去除率为65%~75%,对CODMn和SS的去除效果一般,去除率为40%~60%,对TP的去除效果随着时间推移逐渐减弱,碎石吸附对TP去除起主要作用。  相似文献   

9.
Subsurface flow wetlands contain gravel or sand substrates through which the wastewater flows vertically or horizontally. The aims of this study were, firstly, to quantify biofilm development associated with different size gravel in sections of a subsurface flow wetland with and without plants, and secondly, to conduct laboratory experiments to examine the role of biofilms in nutrient removal. Techniques to quantify biofilm included: bacterial cell counts, EPS and total protein extraction. Based on comparative gravel sample volume, only EPS was greater on the smaller 5 mm gravel particles. There was no significant difference between biofilm growth in sections with and without plants. Two vertical flow laboratory-scale reactors, one containing fresh wetland gravel, the other containing autoclaved gravel, were constructed to determine nutrient transformations. The autoclaved gravel in the "sterile" reactor rapidly became colonised with biofilm. Both reactors were dosed with two types of influent. Initially the influent contained 7.25 mg/L NO3-N and 0.3 mg/L NH4-N; the biofilm reactor removed most of the ammonium and nitrite but nitrate concentrations were only reduced by 20%. In the "sterile" reactor there was negligible removal of ammonium and nitrite indicating little nitrification, however nitrate was reduced by 72%, possibly due to assimilatory nitrate reduction associated with new biofilm development. When the influent contained 3 mg/L NO3-N and 16 mg/L NH4-N almost 100% removal and transformation of NH4-N occurred in both reactors providing an effluent high in NO3-N. Organic P was reduced but inorganic soluble P increased possibly due to mineralisation.  相似文献   

10.
An on-site study on the operational performance of a combined eco-system of ponds and SF constructed wetland for municipal wastewater treatment and reclamation/reuse in Donging City, Shandong, China was carried out from January 2001 through October 2003. The removal efficiencies for various main parameters were: TSS 84.8 +/- 7.3%, BOD5 87.2 +/- 5.3%, CODCr 70.2 +/- 18.6%, TP 52.3 +/- 23.1%, and NH(3)-N 54.8 +/- 23.9% with effluent concentration of TSS 9.12 +/- 5.12 mg/l, BOD5 6.44 +/- 4.58 mg/l, CODCr, 42.8 +/- 6.7 mg/l, TP 0.94 +/- 0.27 mg/l and NH(3)-N 7.95 +/- 2.36 mg/l. In addition, the removal efficiencies for faecal coliforms and total bacteria were > 99.97% and > 99.998% respectively, which well meet Chinese National standards for effluent quality of municipal wastewater treatment plants. The composition of TSS was closely related to CODCr and BOD5 variations, and nitrification-denitrification is the major mechanism of nitrogen removal both in ponds and in wetlands. In addition, sedimentation also played an important role in the removal of TSS, nitrogen, phosphorus and BOD5. The removal efficiencies of various parameters, the number of species and biomass of biological community in the system increased gradually with the ecological maturation.  相似文献   

11.
Coconut dust, which is used intensively in horticultural applications, was tested as an external organic additive in a series of laboratory-scale subsurface-flow constructed wetlands planted with Phragmites australis. The systems were fed with a mixture of NO3(-)-N, NH4+-N, and SRP in tap water to simulate high nutrient loads. In the absence of plants, TN removal efficiency was 66%, and the efficiency increased to > 80% in the microcosm wetlands. TN and NO3- removal efficiencies were marginally increased by coconut-dust treatment in comparison with sand-bed microcosms. Analysis by ANOVA showed that the TN removal from a coconut dust-supplemented sand-bed microcosm was significantly different from a sand-bed microcosm (0.0437 < p < 0.05). All the systems showed an equal capacity to treat NH4+ nitrogen under low influent concentration levels. Phosphorus removal efficiencies were > 98% in all three systems, and a difference between planted and unplanted systems was not observed. Shoot height and shoot densities of P. australis grown in the coconut dust-supplemented medium were significantly higher than those grown in the sand-bed medium. The difference in P. australis growth in response to the coconut dust addition revealed that the added material has the potential to create favourable conditions for plant growth.  相似文献   

12.
构建下行流-上行流、下行流-下行流两套复合人工湿地处理生活污水,考察不同运行方式下两套湿地系统污染物净化效果。结果表明,下行流-上行流复合系统适合在较低水力负荷[0.6m3/(m^2.d)]下运行,系统连续进水5天的出水效果很好,COD、TP、氨氮、TN的去除率分别为75%-95%、65%-85%、45%-80%、45%-80%。下行流-下行流复合系统耐水力负荷冲击能力强,适合在高水力负荷[1.2m3/(m^2.d)]下运行,COD、TP、氨氮、TN的去除率分别为70%-95%、40%-85%、50%-90%、50%-80%;其水流方式较下行流-上行流复合系统水流方式更利于复氧,有利于高水力负荷下COD、氨氮的降解。研究成果为实际中人工湿地处理生活污水的运行操作提供了依据和参考。  相似文献   

13.
Total phosphorus (TP) removal in aged constructed wetlands poses a challenge, especially when treated with swine wastewater with high concentrations of phosphorus (P). Our earlier studies with anaerobic lagoon swine wastewater treatment in constructed wetlands showed a decline in P removal (45-22%) with increased years of operation. These particular wetlands have been treated with swine wastewater every year since the first application in 1997. Preliminary lab-scale studies were conducted to evaluate the efficiency of polyaluminium chloride (PAC) in the removal of phosphate-P (PO4-P) from swine wastewater. The experimental objective was to increase the phosphorus treatment efficiency in constructed wetland by adding PAC as a precipitating agent. PAC was added by continuous injection to each wetland system at a rate of 3 L day(-1) (1:5 dilution of concentrated PAC). Swine wastewater was added from an anaerobic lagoon to four constructed wetland cells (11m wide x 40m long) at TP loads of 5.4-6.1 kg ha(-1) day(-1) in two experimental periods, September to November of 2008 and 2009. Treatment efficiency of two wetland systems: marsh-pond-marsh (M-P-M) and continuous marsh (CM) was compared. The wetlands were planted with cattails (Typha latifolia L.) and bulrushes (Scirpus americanus). In 2008, PAC treatment showed an increase of 27.5 and 40.8% of TP removal over control in M-P-M and CM respectively. Similar trend was also observed in the following year. PAC as a flocculant and precipitating agent showed potential to enhance TP removal in constructed wetlands treated with swine wastewater.  相似文献   

14.
A three-stage constructed wetland for leachate treatment was monitored on a landfill at a pilot scale. The plant had been designed to achieve at least 75% nitrogen removal. NH4-N input concentration was 240 (median) up to 290 mgl(-1) and COD concentration was 455 to 511 mgl(-1), respectively. A 14 m2 vertical flow sand filter plus a 14 m2 horizontal flow sand filter followed by a 3.3 m2 vertical flow sand filter was chosen. Acetic acid was added to the horizontal flow system for denitrification. The results showed a very stable nitrification rate within the vertical flow system of 94% (median) at NH4-N loading rates of about 10 (median) up to 17 gm(-2)d(-1). Denitrification was mainly dependent on the dosing of acetic acid and could reach a maximum of 98%. One interesting effect was the production of nitrite in the horizontal flow sand filter. This could efficiently be eliminated by the subsequent vertical flow sand filter. The chosen concept proved to be very effective for nitrogen removal. In combination with a final activated carbon filter the COD effluent concentrations could be easily and safely controlled. The design of denitrification reed beds showed a further potential for optimization.  相似文献   

15.
Constructed wetlands (CWs) use the same processes that occur in natural wetlands to improve water quality and are used worldwide to treat different qualities of water. This paper shows the results of an Austrian research project having the main goals to optimize vertical flow beds in terms of surface area requirement and nutrient removal, respectively. It could be shown that a subsurface vertical flow constructed wetland (SSVFCW) operated with an organic load of 20 g COD x m(-2) x d(-1) (corresponding to a specific surface area demand of 4 m2 per person) can fulfil the requirements of the Austrian standard regarding effluent concentrations and removal efficiencies. During the warmer months (May - October), when the temperature of the effluent is higher than 12 degrees C, the specific surface area might be further reduced. Even 2 m2 per person have been proven to be adequate. Enhanced nitrogen removal of 58% could be achieved with a two-stage system (first stage: grain size for main layer 1-4 mm, saturated drainage layer; and second stage: grain size for main layer 0.06-4 mm, free drainage) that was operated with an organic load of 80 g COD x m(-2) x d(-1) for the first stage (1 m2 per person), i.e. 40 g COD x m(-2) x d(-1) for the two-stage system (2 m2 per person). Although the two-stage system was operated with higher organic loads a higher effluent quality compared to a single-stage SSVFCW (grain size for main layer 0.06-4 mm, free drainage, organic load 20 g COD x m(-2) x d(-1)) could be reached.  相似文献   

16.
针对山丘坡地的自然环境特点,提出构建梯田式人工湿地处理生活污水的方法,并通过实验装置对梯田式人工湿地处理生活污水的效果进行了初步研究。结果表明:当CODCr、NH4+-N、TP的进水质量浓度变化范围在182.3~286.7 mg/L、32.91~59.28 mg/L、1.23~3.05 mg/L时,其平均去除率分别为86.52%、80.5%、96.16%,出水质量浓度分别低于30mg/L、10mg/L、0.1mg/L;湿地基质中硝化菌、反硝化菌数量变化范围分别为1.5万~420万MPN/g、30万~1 860万MPN/g。与常规人工湿地相比,梯田式人工湿地具有较强的污染物去除能力,特别是具有高效的脱氮除磷效果。  相似文献   

17.
Data from 18 sampling wells in Kodij?rve horizontal subsurface flow (HSSF) constructed wetland (CW) (South Estonia) is presented and differences in purification efficiencies inside the HSSF CW are calculated. Temporarily anaerobic conditions in the Kodij?rve HSSF system did not allow efficient removal of BOD7, NH4-N, Ntot and Ptot. In 2002 a vertical subsurface flow filter was constructed to enhance aeration. The design of the system was based simply on the oxygen demand of the wastewater and on the aeration potential of vertical flow wetlands. The vertical flow system has shown satisfactory results. The purification efficiency of BOD7 in the Kodij?rve CW has improved significantly and there has been a slight increase in purification efficiencies of NH4-N and Ntot. On the ohther hand, the removal efficiency of Ptot has decreased significantly. Although, the mass loading rates have increased, mass removal rates of all four parameters have improved significantly. Nevertheless, optimization of the constructed wetland system is essential in order to meet effluent standards during wintertime.  相似文献   

18.
温度和基质对人工湿地脱氮除磷效果的影响   总被引:1,自引:0,他引:1  
构建由潜流人工湿地和表流人工湿地串联而成的复合人工湿地系统,研究了复合人工湿地脱氮除磷效果以及温度和基质对人工湿地脱氮除磷效果的影响。结果表明,复合人工湿地TP、氨氮平均去除率为33.64%、57.24%;水温降低会导致人工湿地氮磷去除率下降;基质为粗砂的潜流人工湿地脱氮除磷能力大于基质为砾石的潜流人工湿地。  相似文献   

19.
Anaerobic ammonia oxidation (Anammox) has been identified as a new general process-strategy for nitrogen removal in wastewater treatment. In order to evaluate the role and effects of the Anammox process in wetlands, laboratory-scale model experiments were performed with planted fixed bed reactors. A reactor (planted with Juncus effusus) was fed with synthetic wastewater containing 150-200 mg L(-1) NH4+ and 75-480 mg L(-1) NO2(-). Under these operating conditions, the plants were affected by the high ammonia and nitrite concentrations and the nitrogen removal rate fell within the same range of 45-49 mg N d(-1) (equivalent to 0.64-0.70 g Nm(-2)d(-1)) as already reported by other authors. In order to stimulate the rate of nitrogen conversion, the planted reactor was inoculated with Anammox biomass. As a result, the rate of nitrogen removal was increased 4-5-fold and the toxic effects on the plants also disappeared. The results show that, in principle, subsurface flow wetlands can also function as an "Anammox bioreactor". However, the design of a complete process for the treatment of waters with a high ammonia load and, in particular, the realisation of simple technical solutions for partial nitrification have still to be developed.  相似文献   

20.
The objectives of this study were to find appropriate conditions for nitrogen removal by a compact combined constructed wetland system and to evaluate the removal rate constant in a tropical climate. This study will present suitable operating conditions for a combined system to treat pig farm wastewater containing high ammonia-nitrogen. Four laboratory-scale combined constructed wetland units (0.5 x 1.0 x 1.0 m3): vertical flow vegetated bed over horizontal flow sand bed, were operated under an average temperature of 24 degrees C. Pig farm wastewater with COD and NH4-N concentration of 1034 and 448 mg/L in average was fed to the system at different HLR from 2 to 8 cm/day. The performance of the system when operated with a vertical flow bed followed by a horizontal flow bed or vice versa did not show a significant difference but under high HLR, nitrogen removal efficiencies were clearly reduced. Nitrobacter and Nitrosomonas were found in a large number in vertical flow beds and the same for denitrifier bacteria in a horizontal flow beds. Removal rate constants for nitrification (kNH4+ -N) were 0.0413 m/d for H-Vmode and 0.0339 m/d for V-H mode. Removal rate constants for denitrification (kNOx-N) were 0.0979 m/d for H-Vmode and 0.0399 m/d for V-H mode, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号