首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate the manufacture of organized microstructures on titanium substrates in an air atmosphere utilizing a pulsed Nd:YVO4 laser with pulse length of 8 ns and repetition rate of 30 kHz at 1064 nm. The ablation threshold of titanium for irradiation at this wavelength was measured to be in the range of 1.7–1.8 J/cm2. For structuring of the metal, we used maximum laser energy fluence above the ablation threshold. This led to the generation of arrays of organized microstructures with average periods ranging from ~40 to ~90 μm. The mechanism for formation of the microstructures is discussed. Formation of such organized structures on titanium could find applications in sensing and biocompatibility.  相似文献   

2.
This paper presents investigations on the effects of nanosecond laser processing parameters on depth and width of microchannels fabricated from polymethylmethacrylate (PMMA) polymer. A neodymium-doped yttrium aluminium garnet pulsed laser with a fundamental wavelength of 1,064 nm and a third harmonic wavelength of 355 nm with pulse duration of 5 ns is utilized. Hence, experiments are conducted at near-infrared (NIR) and ultraviolet (UV) wavelengths. The laser processing parameters of pulse energy (402–415 mJ at NIR and 35–73 mJ at UV wavelengths), pulse frequency (8–11 Hz), focal spot size (140–190 μm at NIR and 75 μm at UV wavelengths) and scanning rate (400–800 pulse/mm at NIR and 101–263 pulse/mm at UV wavelengths) are varied to obtain a wide range of fluence and processing rate. Microchannel width and depth profile are measured, and main effects plots are obtained to identify the effects of process parameters on channel geometry (width and depth) and material removal rate. The relationship between process variables (width and depth of laser-ablated microchannels) and process parameters is investigated. It is observed that channel width (140–430 μm at NIR and 100–150 μm at UV wavelengths) and depth (30–120 μm at NIR and 35–75 μm at UV wavelengths) decreased linearly with increasing fluence and increased non-linearly with increasing scanning rate. It is also observed that laser processing at UV wavelength provided more consistent channel profiles at lower fluences due to higher laser absorption of PMMA at this wavelength. Mathematical modeling for predicting microchannel profile was developed and validated with experimental results obtained with pulsed laser micromachining at NIR and UV wavelengths.  相似文献   

3.
A novel hybrid process [LASER?+?computer numerical control (CNC) machining] is used to fabricate a linear motion guide. A 20-W pulsed fiber laser and a three-axis CNC machining center were combined to fabricate microscale lubrication grooves on a 5-mm wide linear guide contact surface made of SCM-440H material. Ablation fabrication speed was increased up to 1,000 mm/min (or 16.7 mm/s) with a great ablation quality without any tool wear. The mean values of patterned sizes of lubrication grooves were measured to be between 40 and 80?μm in width and between 150 and 275?μm in depth with a laser pulse repetition of 25 kHz. A specially designed optical device was compact enough to be installed on CNC machine. It was mounted on the CNC spindle and proved to be flexible enough to deliver the laser beam on to the work piece. The microscale ablation quality of the surface was of sufficient quality to be adopted on most linear motion related applications.  相似文献   

4.
Laser shock bending is a sheet metal micro-forming process using shock waves induced by a nanosecond-pulsed laser. It is developed to accurately bend, shape, precision align, or repair micro-components with bending angles less than 10°. Negative bending angle (away from laser beam) can be achieved with the high-energy pulsed laser, despite the conventional positive laser bending mechanism. In this research, various experimental and numerical studies on aluminum sheets are conducted to investigate the different deformation mechanism, positive or negative. The experiments are conducted with the sheet thickness varying from 0.25 to 1.75 mm and laser pulse energy of 0.2 to 0.5 J. A critical thickness threshold of 0.7-0.88 mm is found that the transition of positive–negative bending mechanism occurs. A statistic regression analysis is developed to determine the bending angle as a function of laser process parameters for positive bending cases.  相似文献   

5.
Different laser heat inputs were applied on the gray-colored acrylonitrile butadiene styrene (ABS) plastic using fixed laser power and variable scanning speeds to join ABS- and polycarbonate (PC)-based polymers. Experiments with a laser power between 6 and 8 W and a scanning speed of 1,500, 3,000, and 4,500 mm/min were used for the joining. Heat-affected zone (HAZ) and melt zone measurements were performed to find the joining energy threshold, and the mechanical properties of welds were evaluated. At the low scanning speed, the total heat input at the given area resulted in carbonization damage on the surface. However, energy distributed laser beam joining process by galvanometers resulted in secure and sound weld joining quality. Damage threshold was calculated as 127 J/cm2 with relatively less sensitivity of scanning speed. However, the ablation threshold was measured to be 215, 281, and 424 J/cm2 for the scanning speed of 4,500, 3,000 and 1,500 mm/min, respectively.  相似文献   

6.
Drilling a hole in Invar alloy is accomplished by using a nanosecond pulsed Nd:YAG laser. However, this process has a few problems, such as heat effect and poor edge quality. Therefore, the ablation properties of the Invar alloy were investigated by using an ultrashort pulsed laser, which is a regenerative amplifier Ti:sapphire laser with a 1 kHz repetition rate, a 184 fs pulse duration, and a 785 nm wavelength. To study the ablation characteristics of the Invar alloy, we measured the ablation shape, width, and ablated depth at the energy fluence of a single pulse. The optimal condition for hole drilling is a z-axis transfer depth of 4 μm, a circular feed rate of 0.2 mm/s, and a pulse energy of 26.4 μJ. A fine circular hole without burrs and thermal damage were obtained under the optimal processing conditions. The ultrashort pulsed laser system is an excellent tool for micro-hole drilling in Invar alloys without heat effects and poor edge quality.  相似文献   

7.
Damaged DLC coatings usually require remanufacturing of the entire coated components starting from an industrial chemical de-coating step. Alternatively, a complete or local coating repair can be considered. To pursue this approach, however, a local coating removal is needed as first operation. In this context, controlled decoating based on laser sources can be a suitable and clean alternative to achieve a pre-fixed decoating depth with high accuracy. In the present study, we investigated a laser-based decoating process executed on multilayered DLC films for advanced tribological applications (deposited via a hybrid PVD/PE-CVD technique). The results were acquired via multifocal optical digital microscopy (MF-ODM), which allowed high-resolution 3D surface reconstruction as well as digital profilometry of the lasered and unlasered surface. The study identifies the most critical process parameters which influence the effective decoating depth and the post-decoating surface roughness. In particular, the role of pulse overlap (decomposed along orthogonal directions), laser fluence, number of lasing passes and assist gas is discussed in text. A first experimental campaign was designed to identify the best conditions to obtain full decoating of the DLC + DLC:Cr layers. It was observed that decreasing the marking speed to 200 mm/s was necessary to obtain a sufficient pulse overlap and a nearly planar ablation profile. By operating with microsecond pulses and 1 J/cm2 (fairly above the ablation threshold), less than 10 passes were needed to obtain full decoating of the lasered area with an etching rate of 1.1 μm/loop. Further experiments were then executed in order to minimise the roughness of the rest surface with the best value found at around 0.2 μm. Limited oxidation but higher R a values were observed in Ar atmosphere.  相似文献   

8.
A Q-switched Nd:YAG laser (1,064 nm, 100 ns) was used to machine 2?×?1.5?×?0.5-mm rhombus-shaped tool inserts from a 60?×?0.5-mm circular disk of polycrystalline diamond. A systematic experimental study was undertaken to examine the effects of pulse repetition rate, feed rate, and number of laser passes on kerf, material removal rate, recast layer, surface morphology, and surface roughness. The optimal laser parameters for generating two-dimensional tool profiles were an average power of 3 W, a pulse repetition rate of 2 kHz, a feed rate of 1 mm/s, and a total of 45 laser passes. The beneficial results were a material removal rate of 0.02 mm3/min, kerf width of 27 μm, cutting edge radius of 6 μm, and surface roughness (Ra) of 0.625 μm. Recast layer formation, undulations, and striations were observed in the laser-cut regions. These features were attributed to the presence of a molten layer of cobalt binder, and amorphous carbon and graphite transitioned from diamond. An intriguing feature is the presence of fine particulate matter ranging in size from nanometers to a few micrometers in the laser-cut regions. It is believed that phase transition of diamond and cobalt during laser machining created thermal expansion mismatch stresses sufficient to fracture the solid into fine fragments.  相似文献   

9.
In this research, the nano-second pulsed laser ablation process is studied using the three dimensional finite element analysis (FEA). Unlike other pulsed lasers such as femto-second or pico-second lasers, the nano-second pulsed laser can be analyzed appropriately based on the heat conduction theory and material removal approximation caused by thermal evaporation. Various process parameters such as the number of shots, laser power and wavelength and pulse width of the incident laser may affect the ablation process and we performed the parametric study and compared the simulation result with pre-existing experimental research. Finally, tendency of the ablation process is estimated using the design of experiments (DOE) and the response surface methodology (RSM).  相似文献   

10.
The topographical and chemical characterizations caused by irradiation of a pulsed UV laser were studied experimentally and theoretically for Vectra A950, a thermoplastic pure liquid crystal polymer (LCP). Effects of laser fluence on the crater sizes and morphologies were analyzed and discussed. Based on energy balance, an analytical model was presented to simulate the dependence of ablation rate on laser fluence. The FTIR spectroscopy was used to investigate the mechanism of 355 nm UV YAG laser ablation of LCP.  相似文献   

11.
Ultra-short pulsed laser ablation of crystalline silicon is characterized by a complicated heat diffusion and material removal process. In this research, a computational investigation is undertaken to understand the temperature distribution and heat effect in femtosecond laser grooving of silicon. Energy accumulation and threshold fluence of silicon ablation by femtosecond lasers are estimated through solving coupled energy balance equations. Thermal and optical properties of the material are considered in the calculations. The possible non-thermal ablation process and ablation geometry are analyzed for the case of succession of laser pulses. Thermal-mechanical response induced by temperature gradient is discussed around the laser ablation region. The agreement between the model calculations and experimental results show that this research provides an efficient thermal analysis method of the explosive laser-silicon interaction process, and a feasible way to optimize process parameters with minimum thermal damages.  相似文献   

12.
For the pulsed laser ablation in nanosecond fields, the key physical phenomenon of the removing process is thermal evaporation. For the process optimization of the nano-second laser ablation, it is essential to set up effective simulation that can reflect material absorption coefficient, energy intensity of laser, laser pulse shape, and so forth. In this research, material ablation in nano-second region is simulated by using a finite element method (FEM) commercial package and its result has been compared with experiment results focused on the difference in the ablation depth and its shape occurred after each laser pulse hitting. Finally, the effect of the parameter variation on the ablation process has been verified.  相似文献   

13.
A CAD/CAM tool for prototyping and small-scale production of micro-electro-mechanical systems (MEMS) devices based on the excimer laser ablation process has been developed. The system’s algorithms use the 3D geometry of a microstructure, defined as an STL file exported from a CAD model, and parameters that influence the process (laser fluence, pulse repetition frequency, number of shots per area, wall angle, stitching errors) to automatically generate a precise NC part program for the excimer laser machine. The performance of the system has been verified by NC part program generation for several 3D microstructures and subsequent machining trials. An initial stitching error of 23.4±2.2-μm wide and 3.4±1.5-μm high was observed when the overlap size between adjacent volumes was zero, when ablating 100×100-μm features in polycarbonate (PC) at a fluence of 0.5 J/cm2 using a workpiece-dragging technique. When the size of the overlap was optimised by a system based on optimal process parameters determined by the Taguchi design of experiment method (DOE), and incorporated in the mask design, the maximum stitching error was reduced to 13.4±2.2-μm wide and 1.4±0.9-μm high under the same conditions. By employing a hexagonal-shaped mask with incorporated size of the image overlap, reduced horizontal-stitching errors of 2.4±0.2-μm wide and 1.4±0.2-μm high were observed. The system simplifies part program creation and is useful for excimer laser operators who currently use a tedious trial and error process to create programs and complex masks to generate microstructure parts.  相似文献   

14.
为了探索低成本、大深宽比加工方法,建立了实用的准分子激光微加工系统.以玻璃为实验靶材,用精密微动平台准确调节靶材位置,利用波长248nm的KrF准分子激光器,研究了准分子激光直写刻蚀过程中平均刻蚀速率与激光脉冲能量密度之间的关系.加工出的沟槽剖面形状均呈现锥型,单脉冲烧蚀速率随脉冲数的增加而减小,激光脉冲对材料的刻蚀具有能量阈值,加工槽的深度具有上限值.采用平行激光束或对加工过程进行动态控制还可实现矩形深槽或圆柱深孔的加工.  相似文献   

15.
This paper describes the influence of the discharge current and the pulse duration on the titanium carbide (TiC) deposition process by electrical discharge machining (EDM) with titanium (Ti) powder suspended in working oil. Although the influence of the electrical conditions for removal EDM has been investigated, the criteria for deposition have not been discussed. In the experiments, a 1-mm copper rod was used for an electrode to prevent the flushing of working oil from the gap between the electrode and a workpiece. Ti powder reacted with the cracked carbon from the working oil, then depositing a TiC layer on a workpiece surface. A major criterion of the deposition or removal was the discharge energy over a pulse duration of 10 μs. A thickness of the TiC layer became the maximum at a certain discharge current and pulse duration. Larger discharge energy and power promoted the removal by heat and pressure caused by the discharge. The removal was classified further into two patterns; cracks were observed on the Ti-rich surface in removal pattern 1 and a workpiece was simply removed in removal pattern 2. The maximum hardness of the deposition was 2000 Hv. The workpiece about 10 μm beneath its surface was also hardened because of the dispersion of TiC. The machining conditions for the hardest deposition did not coincide with those for the highest one. Therefore, the discharge current and pulse duration should be optimized for the deposition.  相似文献   

16.
Combining electron optics, fast electronics and pulsed lasers, a transmission and a photoelectron emission microscope were built, which visualize events in thin films and on surfaces with a time resolution of several nanoseconds. The high-speed electron microscopy is capable to track fast laser-induced processes in metals below the ablation threshold, which are difficult to detect by other imaging techniques. The material response to nano- and femtosecond laser pulses was found to be very different. It was dominated by thermo/chemocapillary flow and chemical reactions in the case of nanosecond pulses, and by mechanical deformations and non-thermal electron emission after a femtosecond pulse.  相似文献   

17.
Sustainable manufacturing requires the extended usage of materials and reuse of hard metal tooling. In general, titanium nitride (TiN) coating gives enhanced hardness and wear resistance to the surfaces of engineering tools. However, the high hardness makes it difficult to re-grind or refurbish TiN-coated materials, especially TiN-coated cutting tools. This paper presents the results of laser decoating of TiN from TiN-coated tungsten carbide (WC) substrates. Laser decoating was performed using a KrF excimer laser. The effect of laser fluence, number of pulses, frequency, scanning speed and beam overlap on the decoating performance was investigated in detail. A two-dimensional symmetric finite element model (FEM) was established to elucidate the temperature and stress fields created during the laser decoating process. Successful laser decoating of TiN coating from the WC substrate was demonstrated. It was found that decoating with a laser fluence of 4 J/cm2, scanning speed of 2 mm/s, frequency of 25 Hz and a beam overlap of 91% gives best results for removing an area of TiN coating to its 3 μm thickness. The surface roughness of the best samples was found to be in the order of 0.8–0.9 μm Ra. The experimental and FEM investigation suggested that the decoating of TiN follows combined explosion and evaporation mechanism.  相似文献   

18.
An experimental study has been performed for laser ablation of silicon at 1064 nm with variable pulse durations from 50 nanoseconds to 200 nanoseconds. A spatial multi-pulse enhancement effect has been revealed, which has been rarely reported in literature. The specific feature of this effect is that for multi-pulse laser ablation of silicon performed sequentially at a group of locations, the ablation efficiency and quality starting from the second location can be enhanced if the distance between adjacent locations is sufficiently small, and the ablation efficiency enhancement becomes more obvious as the distance decreases or the laser pulse duration increases. Further study is needed to understand the underlying physical mechanism. This effect, if well understood, can be utilized to significantly improve the quality and efficiency of infrared nanosecond laser silicon ablation. This will widen the practical applications of the low-cost and low-energy-consumption infrared nanosecond lasers and hence significantly decrease the manufacturing cost and energy consumption in many relevant areas.  相似文献   

19.
采用调Q脉冲CO2激光器对Si3N4工程陶瓷进行了切割试验.在计及切口烧蚀前沿形状和高斯光束空间能量分布的前提下,采用简化的二维模型,针对气化切割过程,在能量平衡基础上,建立了一个脉冲激光切割数学模型.试验结果表明,采用高速多次重复走刀工艺可实现无损伤激光切割.  相似文献   

20.
液相脉冲激光烧蚀法合成纳米颗粒是一种绿色环保的制备方法。基于该方法搭建了一套氧化铟锡(ITO)纳米颗粒制备系统,该系统采用皮秒激光作为光源辐照去离子水中的氧化铟锡固体靶材,最终合成出ITO纳米颗粒。随着入射脉冲能量的增加及激光辐照时间的增长,激光烧蚀效率明显增大,ITO产量增多。采用扫描电子显微镜(SEM)及X射线能谱仪(EDS)对制备的ITO纳米颗粒进行表征,所制备的纳米颗粒不含除铟(In)、锡(Sn)之外的杂质成分,纯度较高且72%的ITO纳米颗粒粒径大小在20~50 nm之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号