首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effects of jet-jet spacing (Xn/D), low nozzle-plate spacings (H/D = 0.25, 1.0 and 6.0) and spent air exits located between the jet orifices were studied on the magnitude and uniformity of the convective heat transfer coefficients for confined 3 × 3 square arrays of isothermal axisymmetric air jets impinging normally to a heated surface. Local and average Nusselt numbers are presented for Reynolds number range of 3500–20 400. The local Nusselt numbers illustrate the (non)uniformity of the heat transfer and aid in understanding the variations in the average Nusselt number. The jet-jet spacing affects the convective coefficient by varying the influence of the adjacent jet interference and fraction of the impingement surface covered by the wall jet. The addition of spent air exits increased the convective coefficient and influenced the location of the optimum separation distance. In addition, significant enhancement of the uniformity and the convective coefficients was observed at H/D = 0.25 and 1.0 when compared to H/D = 6.0.  相似文献   

2.
The present work is concerned with exploring the potential of refractive index-based imaging techniques for investigating the heat transfer characteristics of impinging turbulent synthetic jets. The line-of-sight images of the convective field have been recorded using a Mach Zehnder interferometer. Heat transfer experiments have been conducted in infinite fringe setting mode of the interferometer with air as the working fluid. The effect of the excitation frequency of the synthetic jet on the resultant temperature distribution and local heat transfer characteristics has been studied. The fringe patterns recorded in the form of interferograms have first been qualitatively discussed and thereafter, quantitatively analyzed to determine the two-dimensional temperature field. Local heat transfer coefficients along the width of the heated copper block have been determined from the temperature field distribution thus obtained from the interferograms. The results have been presented in the form of interferometric images recorded as a function of frequency of the synthetic jet, corresponding two-dimensional temperature distributions and local variation of heat transfer coefficients. Interferometric measurements predicted maxima of the heat transfer coefficient at the resonance frequency of the synthetic jet and at a jet-to-plate surface spacing (z/d) of 3. These observations correlate well with the thermocouple-based measurements of temperature and heat transfer coefficient performed simultaneously during the experiments. The interferometry-based study, as reported in the present work for the first time in the context of synthetic jets, highlights the importance of refractive index-based imaging techniques as a potential tool for understanding the local heat transfer characteristics of synthetic jets.  相似文献   

3.
Measurements were made to investigate the localized heat transfer behavior of submerged slot jets. The experiments were performed with kerosene jets impinging on a vertical constant-heat-flux surface from a meso-scale slot nozzle 125 μm in width with Re = 600–1200 and nozzle-to-plate spacing Z/B = 2–20. Heat transfer coefficients at the stagnation line were measured and correlated as a function of jet Reynolds numbers and Prandtl numbers. Lateral distributions of local heat transfer coefficients were also determined and correlated. Non-monotonic variations and unusual behavior of local heat transfers were observed and attributed to the possible transition from a laminar to a turbulent flow. This transition takes place within an extremely short distance of 400–500 μm.  相似文献   

4.
It has been shown that the heat transfer coefficients obtained from using the 1-D transient liquid crystal scheme are higher than those obtained from employing the 3-D scheme when surface heat transfer is highly nonuniform such as on a hot surface subject to jet impingement cooling. This is due to the fact that 1-D method does not include the lateral heat flows induced by local temperature gradients. The objective of this study is to provide a new database of heat transfer coefficient distribution on the jet impingement target surface in the confined cavity by employing a 3-D transient liquid crystal scheme. The study is performed with an 8 × 11 array of confined impinging jets with Reynolds numbers ranging from 1039 to 5175. The 1-D results are higher than the 3-D results with the local maximum and minimum heat transfer values being overvalued by about 15–20% and the overall heat transfer by approximately 12%. In addition, hot-film measurements of the flow structure are conducted to gain insight into the effects of cross-flow on heat transfer behavior. The surface mapping of heat transfer coefficient demonstrates a change from columnar pattern to a horizontal pattern and switching back to the columnar pattern as Reynolds number increased consecutively. This pattern switching is thought to be caused by the competition between jet penetration and the cross-flow buffering effect. A nonuniformity index is defined to provide a quantitative measure for cooling effectiveness for various cases. The results indicate that increased cross-flow degrades the heat transfer performance but increase uniformity.  相似文献   

5.
Impinging jets are a means of achieving high heat transfer coefficients both locally and on an area averaged basis. The temporal nature of both the fluid flow and heat transfer has been investigated for Reynolds numbers from 10,000 to 30,000 and non-dimensional surface to jet exit distance, H/D, from 0.5 to 8. At the impingement surface simultaneous acquisition of both local heat flux and local velocity signal has facilitated a comprehensive analysis of the effect that fluid flow has on the heat transfer. Results are presented in the form of surface heat transfer and fluid velocity signal spectra, and coherence and phase difference between the corresponding velocity and heat flux signals. It has been shown that the evolution of vortices with distance from the jet exit has an influence on the magnitude of the heat transfer coefficient in the wall jet.  相似文献   

6.
A detailed measurement of the heat/mass transfer coefficients on the ribbed surfaces for the rotating impingement/effusion cooling system has been conducted. Three different jet orientations (front, leading, and trailing) were investigated at the same rotating speed and impinging jet Reynolds number of 3000. A naphthalene sublimation method was used to obtain local heat/mass transfer coefficients. Regardless of rib turbulators, the leading and trailing orientations lead to totally changed heat/mass transfer distributions due to the jet deflection, while the Sh distributions of the front orientation were similar to those of the stationary case. For leading and trailing orientations, the influence of crossflow, which deflected wall jets, decreased due to the blockage effect of the rib turbulators. Therefore, the wall jets spread more widely and the interaction between adjacent wall jets along spanwise direction became stronger, enhancing the heat/mass transfer compared to that on smooth surface.  相似文献   

7.
The present study investigates the effects of spent air flows with and without effusion holes on heat/mass transfer on a target plate for array impinging jets. For a conventional type of array impinging jets without effusion holes, the spent air of the injected jets forms a cross-flow within the confined space and affects significantly the downstream jet flow. The injection plate of array impinging jets is modified having effusion holes to prevent the cross-flow of the spent air where the spent air is discharged through the effusion holes after impingement on the target plate. A naphthalene sublimation method is employed to determine local heat/mass transfer coefficients on the target plate using a heat and mass transfer analogy. The flow patterns of the array impinging jets are calculated numerically and compared for the cases without and with the effusion holes. For small gap distances, heat/mass transfer coefficients without effusion holes are very non-uniform due to the strong effects of cross-flow and re-entrainments of spent air. However, uniform distributions and enhancements of heat/mass transfer coefficients are obtained by installing the effusion holes. For large gap distances, the effect of cross-flow is weak and the distributions and levels of heat/mass transfer coefficients are similar for both cases.  相似文献   

8.
A series of experiments are conducted to investigate the non-thermal equilibrium characteristics of melting of a packed bed under horizontal forced and mixed convections. This configuration imposes a complex treatment in phase change heat transfer that involves not only the coupled heat, mass and momentum exchanges but also the local geometric change of the packed bed (packing effect). Using visualization observations and measurements, we determine experimentally the volumes and packing patterns of the melting granular packed beds and the time variation of average melting rate per unit bed volume and average heat transfer coefficient for Re=71–2291, Gr/Re2=1.48×10−5–17.32, and Ste=0.0444–0.385. The effects of water velocity and water temperature on the melting and heat transfer in the melting process are analyzed. The effects of packing patterns on Nusselt number correlations are presented. Using the definition of a terminal velocity, a Reynolds number ratio is developed as the criterion defining the floating, non-floating or transitional packing pattern.  相似文献   

9.
Mehmet Arik 《传热工程》2013,34(9):763-773
It has been shown that synthetic jets can enhance heat transfer in air-cooling during natural convection heat transfer. Those meso scale devices are expected to be one of the methods of choice for cooling confined space, low heat-generating electronics. The present study focuses on the local and global heat transfer coefficients of a high-frequency meso scale synthetic jet. The experiments have been completed with synthetic jets, which are 12.5 mm in diameter and 2 mm thick with a square orifice of 1 mm. A synthetic jet has been driven at the resonance frequency of 4500 Hz, and voltage was between 30 V and 50 V. Earlier studies have focused on understanding the effect of voltage and driving frequency on the average heat transfer effect, while the current study aims for determining local heat transfer. A microscopic infrared thermal imaging technique was used to acquire local temperature distributions, and the data were analyzed for local convective and radiative heat transfer coefficients. Four square heaters (each with a different size) have been studied in the current study to determine the effect of the characteristic length as well. Heat transfer enhancements over the specific heater sizes are presented, and it is found to be between 4 and 10 times of natural convection.  相似文献   

10.
Effects of jet inlet geometry and aspect ratio on local and average heat transfer characteristics of totally nine confined impinging jets have been investigated experimentally using thermochromic liquid crystals and numerically by using a 3-D low Reynolds number k–? model. Experimental study by using liquid crystals for temperature measurement was conducted for three different jet exit geometries (circular, elliptic, rectangular). In addition, simulations were performed at the same mass flow rate for totally nine jet exit geometries including circular, elliptic and rectangular jets with different aspect ratios for dimensionless jet to plate distances 2, 6, and 12.As the aspect ratio of equal cross-sectional area elliptic and rectangular jets increases, heat transfer enhancement in the stagnation region was obtained. As a result higher aspect ratio jets can be used as a passive enhancement technique for localized heating or cooling especially at small jet to plate distances. Wall jet region comprises very large portion of the impinging plate under study and generally lower heat transfer rates were attained for higher aspect ratio jets in this region especially at small jet to plate distances. Therefore as the aspect ratio increases, lower average heat transfer rates were acquired. The effect of aspect ratio on local and average heat transfer decreases with increasing jet to plate distance. Even though the mass flow rate is the same, heat transfer rate of rectangular jets were reduced with increasing the cross-sectional area. With increasing jet to plate distance very similar heat transfer characteristics were observed along the major and minor axis directions.  相似文献   

11.
Impingement transfer coefficients due to initially laminar slot jets   总被引:1,自引:0,他引:1  
The transfer coefficients resulting from the impingement of a slot jet on a plane surface have been measured by the naphthalene sublimation technique. The experiments were performed with jets that are laminar at the exit of the duct from which the jet issues. In addition, the velocity profiles at the duct exit were fully developed. Distributions of the local mass-transfer coefficient on the impingement surface were determined for five Reynolds numbers and at five separation distances between the duct and the surface. The mass-transfer results can be converted to heat-transfer results by using the heat-mass transfer analogy.It was found that the transfer coefficients generally tended to decrease with increasing separation distance, but there was evidence of non-monotonic behavior owing to the opposite influences of mixing-induced turbulence and diminished jet velocity. Increases in Reynolds number tended to increase the transfer coefficients, and the stagnation point values were correlated with a 0·6-power dependence. The surface distributions of the transfer coefficient were bell-shaped, with the largest value at the stagnation point. Comparisons with available literature suggested that the shape of the initial velocity profile has a significant effect on the transfer characteristics of the impingement surface.  相似文献   

12.
A heat transfer experiment on a wall with laminar flow was performed by using a wall jet. The wall jet was generated by a flow control plate placed near the wall. Heat transfer coefficients were measured by a Mach. Zehnder interferometer. Flow patterns and velocities were measured by a smoke-wire method and a laser Doppler velocimeter, respectively. The height of the plates was varied from 2 mm to 8mm. The clearances between the wall and plate were varied from O mm to 7.6 mm. The following results were obtained. The large plate height gave a large, local heat transfer coefficient. The local heat transfer coefficients were enhanced about 7 times as high as that without the place at h = 8 mm, 0 = 30 degrees, and c/(c + h) = 0.15. The optimum wall jet generator angle for large heat quantity was 30 degrees or 45 degrees. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res. 25 (1): 1–11, 1996  相似文献   

13.
INTRODUCTIoNJetimpingementhasbeenextensivelyemployedintechnicalprocessestoproducerelativelyhighheat/massfluxes.Incomparisonwiththeheat/masstransferratesprovidedbyconventionaltechniqueswithfluidfiowsparalleltotheheat/masstransfersur-face,aremarkableincreaseintransfercoefficientscanbeobtainedinthisfashion.Inmostcasesairisusedastheworkingmedium.Examplesofairjetapp1icationsincludecoolingofturbinebladesandelectroniccom-ponents,annealingofmetallicandplasticsheets,dry-ingoftextilesandpaper,andtem…  相似文献   

14.
Impinging jets provide a means of achieving high heat transfer coefficients both locally and on an area averaged basis. The current work forms the first stage of a two part investigation of heat transfer distributions from a heated flat surface subject to an impinging air jet for Reynolds numbers from 10,000 to 30,000 and non-dimensional surface to jet exit spacing, H/D, from 0.5 to 8. In the present paper, the relative magnitudes of the local heat transfer coefficients are compared to the fluctuating components and to the mean and root-mean-square local velocity components. It has been shown that at low nozzle to surface spacings (<2 diameters) secondary peaks in the radial heat transfer distributions are due to an abrupt increase in turbulence in the wall jet. In particular the velocity fluctuations normal to the impingement surface have a controlling influence on the enhancement in the wall jet.  相似文献   

15.
The flow field of confined circular and elliptic jets was studied experimentally with a Laser Doppler Anemometry (LDA) system. In addition, heat transfer characteristics were numerically investigated. Experiments were conducted with a circular jet and an elliptic jet of aspect ratio four, jet to target spacings of 2 and 6 jet diameters, and Reynolds number 10 000. The toroidal recirculation pattern was observed in the outflow region for both geometries at dimensionless jet to plate distance 2. Higher spreading rates in the minor axis direction of the elliptic jet have also been mapped. Along the target plate, different boundary layer profiles were obtained for circular and elliptic jets at H/d=2, but profiles became similar when dimensionless jet to plate distance was increased to 6. Positions of maximum radial and axial velocities and turbulence intensities have been determined for both geometries. For the confined circular and elliptic jet geometries, analysis of flow field measurements and numerical heat transfer results showed that inner peaks in local heat transfer closely relate to turbulence intensities in the jet and radial flow acceleration along the wall. Differences between the circular and elliptic jet, in terms of flow field and heat transfer characteristics, reduced with increase in the jet to plate distance.  相似文献   

16.
The present method utilized the hue-angle method to process the color images captured from the liquid crystal color play. Instantaneous temperature readings from embedded thermocouples were utilized for in situ calibration of hue angle for each data set. The convective heat transfer coefficient results were obtained by performing a 3-D inverse transient conduction calculation over the entire jet impingement target surface and the substrate. The results of average heat transfer coefficients agreed well with previous experimental results of point measurements by thermocouples.Comparison between 1-D and 3-D results indicates that 1-D results are higher than the 3-D results with the local maximum and minimum heat transfer values being overvalued by about 15-20% and the overall heat transfer by approximately 12%. This is due to the fact that 1-D method does not include the lateral heat flows induced by local temperature gradients.  相似文献   

17.
阵列射流冲击冷却换热特性的数值研究   总被引:1,自引:0,他引:1  
运用数值计算的方法对不同流动取向的多排孔冲击射流冷却特性进行了三维模拟,并对有初始横向流的多排孔冲击射流冷却特性进行了数值研究,揭示出射流雷诺数、流动方向、初始横向流对冲击冷却传热特性的影响规律。结果表明:研究范围内,射流雷诺数越大,冲击靶面换热效果越好;冲击腔室两端都设为出口时努赛尔数峰值所对应的射流驻点区向下游偏移最小且换热效果最好;当横流雷诺数与射流雷诺数之比大于0.5之后,有横流时的冲击射流冷却局部努赛尔数比无横流时有较为显著下降。  相似文献   

18.
Impinging jets may be used to achieve enhanced local heat transfer for convective heating, cooling, or drying. The issuing jet may contact the surface normally or obliquely. Factors such as jet attachment, surface angle, jet angle and size, separation distance between jet orifice and surface of impingement, and trajectory influence heat transfer dramatically. This study addresses the thermal problem of jet impingement on an inclined surface and is motivated by the practical application of air jets issuing out of a defroster’s nozzles and impinging on the inclined windshield surface of a vehicle. The effects of incoming fluid velocity, openings’ geometry (circular vs. rectangular), number of openings, angle that the inclined surface makes with the horizontal plane and angle of impinging jet on heat transfer are examined. Fluid mechanics and heat transfer characteristics are exhibited in details for a configuration with three rectangular openings. A comparative study for other configurations is also featured. The results are correlated in terms of governing dimensionless parameters through numerically-based correlations that are useful for predicting heat transfer on an inclined surface subject to impinging airflow.  相似文献   

19.
Discoidal rotor–stator systems are nowadays sometimes used in electrical wind generator. The cooling of such a system is a major problem due to the fact that high electrical losses are dissipated for relatively low rotational speed, responsible of the cooling. A new cooling solution is then investigated in this paper. So, this paper presents an experimental study of the local heat transfers on the rotor surface in the air-gap of a discoidal rotor–stator system, in which an air jet comes through the stator and impinges the rotor. To determine the surface temperatures, measurements were taken on the rotor, using an experimental technique based on infrared thermography. A thermal balance equation was used to identify the local convective heat transfer coefficient. The influence of the axial Reynolds number Rej and the rotational Reynolds number Re was measured and compared with the data available in the literature. Local convective heat transfer coefficients were obtained for an inter-disk dimensionless spacing interval G ranging from 0.01 to 0.16 for Rej between 0 and 41,666 and for Re between 20,000 and 516,000. The rotating disk can thus be divided into zones: one dominated by the air jet near the center of the rotor and one affected by both the air jet and rotation. Even though these two zones are not located in the same place on the disk, the heat transfers with non-zero impinging jets appear to be continuously improved compared to those with no jets. Critical radii over the rotor surface are identified and correlations are given.  相似文献   

20.
基于V2F湍流模型计算研究了卷吸作用对高温差下圆管冲击射流换热的影响,首先通过计算结果与实验值的对比验证模型方法的有效性,然后分析了基于绝热壁面温度计算的努赛尔数和射流有效度随射流和环境的温差以及雷诺数的变化,并研究了取不同定性温度对计算结果的影响。计算结果表明,高温差下定性温度取为射流温度时,基于绝热壁面温度计算的努赛尔数与射流和环境之间的温差近似无关,有效度也与雷诺数无关,但有效度随射流和环境的温差变化较大。因此,在温差较低时,依据射流和环境温度相同时的换热工况得到射流和环境温度不同时的换热工况是可行的,但温差越大,由该方法带来的误差也越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号