首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Cyclone separation is studied by means of numerical simulations. While the gas flow is modeled by a modified Reynolds stress (RS) model, the behavior of the particles is pictured by a combined Eulerian–Lagrangian approach. A mono-disperse Eulerian particle phase is utilized to account for inter-particle collisions, while the effects of fractional separation and particle-wall collisions are considered by poly-disperse Lagrangian particles. The above particle models interact in two ways. On the one hand, the Lagrangian particles determine the local mean diameter of the substitute Eulerian particle class. On the other hand, especially in regions of high particle concentration, the Eulerian particle phase exerts an additional collisional force onto the Lagrangian particle trajectories. An industrial cyclone is chosen as a test case and the numerical results are evaluated with respect to pressure drop as well as to global and fractional separation efficiency. In this context the influence of the cyclone’s mass loading and wall roughness is highlighted. Simulations indicate that the separation efficiency improves with increasing mass loading until an excess loading is reached while at the same time the pressure drop is reduced. Furthermore, it can be shown that rough walls lead to a reduction of separation efficiency while simultaneously the pressure drop decreases. The simulations results are compared with both an analytic theory of Muschelknautz [Die Berechnung von Zykonabscheidern für Gase. Chem Ing Techn 44, (1+2):63–71, 1972] as well as with real plant measurements.  相似文献   

2.
The diffusion of small suspended particles in a turbulent channel flow is studied by solving the transport advection-diffusion equation. The mean flowfield in the channel is simulated using a two-equation k-ε turbulence model. Deposition velocity is evaluated at different sections in the channel for different particle sizes and flow Reynolds numbers. The effects of turbulence dispersion and Brownian diffusion on particle deposition velocity are discussed. The variation of particle deposition velocity with particle diameter, density and flow Reynolds number are analyzed. The wall deposition velocities for different size particles are compared with those obtained by other models.  相似文献   

3.
The behavior of dense gas–solid flows in engineering applications such as fluidized beds and pneumatic conveyers is highly complex and a reliable numerical model is required. Such flows are usually within solid walls that considerably affect the flow fields, and it is important to correctly include this effect in numerical models to improve their prediction capability. The observation of microscopic flows near walls can enhance our understanding of the flow behavior and assist in improving models. In this study, direct simulations are performed to investigate the effect of a wall on flow fields at a microscopic level. The effects of the bulk void fraction, particle Reynolds number, and particle diameter are investigated. The prediction performances of existing correlation equations usually used in mesoscopic model calculations are also investigated. It is found that the Ergun and Beetstra equations produce large discrepancies in the region within a distance equal to the particle diameter from the wall.  相似文献   

4.
High gradient magnetic particle separation in viscous flows by 3D BEM   总被引:1,自引:1,他引:0  
The boundary element method was applied to study the motion of magnetic particles in fluid flow under the action of external nonuniform magnetic field. The derived formulation combines the velocity-vorticity resolved Navier–Stokes equations with the Lagrange based particle tracking model, where the one-way coupling with fluid phase was considered. The derived algorithm was used to test a possible design of high gradient magnetic separation in a narrow channel by computing particles trajectories in channel flow under the influence of hydrodynamic and magnetic forces. Magnetic field gradient was obtained by magnetization wires placed outside of the channel. Simulations with varying external magnetic field and flow rate were preformed in order to asses the collection efficiency of the proposed device. We found that the collection efficiency decreases linearly with increasing flow rate. Also, the collection efficiency was found to increase with magnetic field strength only up a saturation point. Furthermore, we found that high collection efficiently is not feasible at high flow velocity and/or at weak magnetic field. Recommendation for optimal choice of external magnetic field and flow rate is discussed.  相似文献   

5.
刘佳琪  张国城  吴丹  赵晓宁  荆文杰 《计量学报》2021,42(10):1398-1403
研究了基于静态箱法的PM2.5切割器捕集效率评价系统。通过设计并搭建评价系统,使用标准规定的8种粒径的聚苯乙烯小球进行雾化发尘,在静态箱中产生符合测量要求的气溶胶环境,使用空气动力学粒径谱仪对切割前后的颗粒物进行计数测量、最终获取切割器的捕集效率曲线,并选择最佳插值拟合算法进行数据拟合。通过对国产以及进口的切割器分别进行评价实验,获取了切割器的捕集效率。该研究结果有助于规范切割器的生产与使用,为后续开展其他类型切割器的评价提供参考。  相似文献   

6.
A numerical simulation was conducted of the dynamic trajectories and the separation performance of oil droplets, with a focus on the breakup of oil droplets in an oil–gas cyclone separator. The separation efficiency was also studied experimentally, and the oil droplets' diameter distributions before and after the separator were measured with a Malvern particle size analyser to verify the simulation model. Both the experimental and simulation results showed that the breakup of oil droplets occurred in the separation process, clearly influencing the separation efficiency. In addition, the results indicated that inlet velocity played an important role in separation efficiency, as it not only significantly affected the tangential velocity inside the separator, but also determined the possibility and degree of the breakup of oil droplets.  相似文献   

7.
The influence of the detailed design of the sidewall region upon the over-all band-broadening in microfabricated packed-bed or collocated monolithic support structure (COMOSS) columns has been investigated using computational fluid dynamics (CFD) simulation techniques. It is shown that, under unretained solute conditions, very small structural variations of the order of only 5% of the particle diameter can give rise to a 4-fold increase of the band-broadening. A comprehensive study has been made to quantify this effect as a function of the fluid velocity, the particle diameter, the channel widths, and of course, the sidewall region design. Because the sidewall effect can be fully attributed to a mismatch between the flow rates in the column center and in the sidewall region, it is fortunately also quite straightforward to avoid it. A very simple design, yielding band-broadening values identical to that of a hypothetical sidewall-less column for all possible values of the flow velocity, the particle diameter, or the channel width is proposed.  相似文献   

8.
Qing D  Schimpf ME 《Analytical chemistry》2002,74(11):2478-2485
In the characterization of materials by field-flow fractionation (FFF), the experienced analyst understands the importance of incorporating additives in the carrier liquid that minimize or eliminate interactions between the analyte and accumulation wall, particularly in aqueous systems. However, as FFF is applied to more difficult samples, such as those with high surface energies, it is increasingly difficult to find additives that completely eliminate particle-wall interactions. Furthermore, the analyst may wish to use specific conditions that preserve the high surface energy of particles, to study their interaction with other materials through their behavior in the FFF channel. With this in mind, Williams and co-workers developed a model that quantifies the effect of particle-wall interactions in FFF using an empirically determined interaction parameter. In this work, the model is evaluated for the application of flow FFF in carrier liquids of low ionic strength, where particle-wall interactions are magnified. The retention of particles ranging in size from 64 to 1000 nm is measured using a wide range of field strengths and retention levels. The model is found to be generally valid over the entire range, except for minor discrepancies at lower levels of retention. Although retention levels are dramatically affected by particle-wall interactions, the point of steric inversion (500 nm), where the size-based elution order reverses, is not affected. When particle-wall interactions are not accounted for, they lead to a bias in particle sizes calculated from standard retention theory of up to 70%. The model can also be used to refine the measurement of channel thickness, which is important for the accurate conversion of retention parameters to particle sizes. In this work, for example, errors in channel thickness led to systematic errors on the order of 10% in particle diameter.  相似文献   

9.
Spatially separated ZnO pillars, typically 300 nm in diameter and 2 microm in height, are fabricated via a template-directed approach that leads to long-range hexagonal order. The templates of Au nanodisk arrays are obtained by using metal membranes as a lithography mask. The growth of ZnO pillars is performed in a double-tube system through vapor diffusion-deposition. The growth mechanism of the pillars is studied in detail and is proposed to be a combination of vapor-liquid-solid and vapor-solid models. The piezoelectric and optical properties of single pillars are characterized using piezoresponse force microscopy and micro-photoluminescence spectroscopy, respectively. The pillars show strong excitonic emissions up to room temperature, which indicate a relatively low defect density and good crystalline quality. The obtained piezoelectric coefficient d(33) is (7.5+/-0.6) pm V(-1), which is to our knowledge the first reported value for a single nanopillar.  相似文献   

10.
《Advanced Powder Technology》2014,25(6):1845-1853
This paper presents a microscopic analysis of the saltation of particles on an obliquely oscillating plate driven by sine waves with an amplitude on the order of tens of micrometers and a frequency on the order of hundreds of hertz. To examine the effect of the diameter of a particle on its motion, the trajectories and velocities of different-sized particles, from 0.5 to 500 μm in mass median diameter, are analyzed using images captured by a high-speed microscope camera. The results show that larger particles bounce higher, whereas smaller particles easily agglomerate and bounce only slightly, owing to the low restitution caused by their loosely packed structure. In addition, larger particles bounce forward and backward repeatedly, while the agglomerated particles always bounce forward, and consequently have the highest transport velocity among these particles. The particle motion and the transport velocity can be explained by a theoretical probability model.  相似文献   

11.
Electrophoresis of a cylindrical particle placed between two parallel walls is considered for arbitrary eccentricity. The electric field is perpendicular to the particle axis, and both the particle and walls are non-conducting. The electrical double layers adjacent to the solid surfaces are assumed to be thin with respect to the particle radius and to the particle–wall gap. A boundary-element method is used to solve the governing equations. It is found that the viscous effect becomes comparable to the electrophoresis when the ratio between the channel width and cylinder diameter approaches unity. In addition, the eccentricity has a significant effect on the particle's rotation.  相似文献   

12.
13.
A mesoporous membrane composed of nanochannels with a uniform diameter has a potential use for precise size-exclusive separation of molecules. Here, we report a novel method to form a hybrid membrane composed of silica-surfactant nanocomposite and a porous alumina membrane, by which size-selective transport of molecules across the membrane becomes possible. The nanocomposite formed inside each columnar alumina pore was an assembly of surfactant-templated silica-nanochannels with a channel diameter of 3.4 nm; the channel direction being predominantly oriented along the wall of the columnar alumina pore. Molecules could be transported across the membrane including the silica-surfactant nanocomposite with a capability of nanometre-order size-exclusive separation. Our proposed membrane system has a potential use not only for separation science, but also catalysis and chip technologies.  相似文献   

14.
Results comparing Eulerian and Lagrangian simulations of particle deposition from a point source in a channel are presented. The mean turbulent flow field is simulated using a two-equation k-ε turbulence model. In the first, approach, diffusion of aerosol particles is studied by solving the corresponding advection-diffusion equation. Deposition of particles in the intermediate size range are analyzed by considering both the turbulent eddy diffusion and the eddy impaction processes, as well as the Brownian diffusion effects. In the second approach, the turbulence fluctuating velocity field are numerically simulated as a Gaussian random process. The Lagrangian trajectories of aerosol particles in the channel are then evaluated by solving the corresponding particle equation of motion. Effects of Brownian diffusion on particle motions are also included. A series of digital simulations for particles of various sizes which are released at different locations across the channel are carried out. Depositions of different size particles on the wall under a variety of conditions are analyzed. The relative significance of turbulence and Brownian effects are also discussed.  相似文献   

15.
Magnetic nanoparticles have been employed to capture pathogens for many biological applications; however, optimal particle sizes have been determined empirically in specific capturing protocols. Here, a theoretical model that simulates capture of bacteria is described and used to calculate bacterial collision frequencies and magnetophoretic properties for a range of particle sizes. The model predicts that particles with a diameter of 460 nm should produce optimal separation of bacteria in buffer flowing at 1 L h−1. Validating the predictive power of the model, Staphylococcus aureus is separated from buffer and blood flowing through magnetic capture devices using six different sizes of magnetic particles. Experimental magnetic separation in buffer conditions confirms that particles with a diameter closest to the predicted optimal particle size provide the most effective capture. Modeling the capturing process in plasma and blood by introducing empirical constants (ce), which integrate the interfering effects of biological components on the binding kinetics of magnetic beads to bacteria, smaller beads with 50 nm diameters are predicted that exhibit maximum magnetic separation of bacteria from blood and experimentally validated this trend. The predictive power of the model suggests its utility for the future design of magnetic separation for diagnostic and therapeutic applications.  相似文献   

16.
In this paper, we investigate the motion of a particle confined between the oscillating and fixed walls. As the particle collides with the moving wall in the phase of oscillations, when the wall velocity grows, the wall after collision catches up with the particle. This process can be repeated many times until in finite time interval the particle is found lying on the wall and continues its motion together with the wall. When the sign of the wall acceleration changes the particle detaches from the wall with zero velocity, so that it looks as if the particle “sticks” to the wall. It has been found that if the collision is inelastic, “sticking” leads to convergence of close trajectories except for the case of weak decay. On the contrary, in the case of elastic collision “sticking” of the particle causes even a more rapid divergence of theses trajectories.  相似文献   

17.
ABSTRACT

Results comparing Eulerian and Lagrangian simulations of particle deposition from a point source in a channel are presented. The mean turbulent flow field is simulated using a two-equation k-? turbulence model. In the first, approach, diffusion of aerosol particles is studied by solving the corresponding advection-diffusion equation. Deposition of particles in the intermediate size range are analyzed by considering both the turbulent eddy diffusion and the eddy impaction processes, as well as the Brownian diffusion effects. In the second approach, the turbulence fluctuating velocity field are numerically simulated as a Gaussian random process. The Lagrangian trajectories of aerosol particles in the channel are then evaluated by solving the corresponding particle equation of motion. Effects of Brownian diffusion on particle motions are also included. A series of digital simulations for particles of various sizes which are released at different locations across the channel are carried out. Depositions of different size particles on the wall under a variety of conditions are analyzed. The relative significance of turbulence and Brownian effects are also discussed.  相似文献   

18.
We explored wide-pitch ohmic-side structures for the BELLE SVD, where we proposed a field-plate structure combined with narrow p-barriers in between the readout electrodes of 90, 113, 180, and 226 μm-pitch detectors. The effect of the p-barriers was studied with a numerical model to trace the carrier trajectories. The charge collection and sharing properties were examined in practice for prototype small-size detectors with an IR pulse shining from either the junction side or the ohmic side. The channel separation capabilities were also shown to be appropriate under nominal operation conditions.  相似文献   

19.
Split-flow thin (SPLITT) separation cells, consisting of submillimeter thick rectangular channels having now splitters at both inlet and outlet ends, were operated continuously using the earth's gravitational field as a driving force to prepare narrow fractions from polydisperse micron-size glass bead populations. Equations arc shown that make it possible to achieve a binary fractionation around a specified cutoff particle diameter by the control of inlet and outlet flowrates. Using a single separation cell, each narrow fraction was obtained by a two step fractionation. one dividing the panicle population around the upper desired limit and the other around the lower desired limit of particle diameters. The clean fractionation by SPLITT cell operation was verified by scanning electron microscopy, which also provided the mean particle diameter and the coefficient of variation for each fraction. The consistency of size distribution results was also examined by steric field-flow fractionation.  相似文献   

20.
Most software packages available for particle tracing focus on visualizing steady or unsteady vector fields by using massless particle trajectories. For many applications, however, the use of massed and evaporating particles would provide a model of physical processes that could be used in product testing or design. In this article we describe the TrackPack toolkit, which provides an integrated interface for computing massless, massed, and evaporating particle trajectories in steady flow. In all cases, we assume a noncoupled model and compute particle trajectories through an existing vector field by numerically integrating with forward Euler, fourth-order Runge-Kutta, or an analytic streamline calculation. The TrackPack software effort was motivated by an industrial application to model pollution control systems in industrial boilers. We briefly describe the project and the visualization environment, and we demonstrate the necessity for massed, evaporating models in the application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号