首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The separate co‐encapsulation and selective controlled release of multiple encapsulants in a predetermined sequence has potentially important applications for drug delivery and tissue engineering. However, the selective controlled release of distinct contents upon one triggering event for most existing microcarriers still remains challenging. Here, novel microfluidic fabrication of compound‐droplet‐pairs‐filled hydrogel microfibers (C‐Fibers) is presented for two‐step selective controlled release under AC electric field. The parallel arranged compound droplets enable the separate co‐encapsulation of distinct contents in a single microfiber, and the release sequence is guaranteed by the discrepancy of the shell thickness or core conductivity of the encapsulated droplets. This is demonstrated by using a high‐frequency electric field to trigger the first burst release of droplets with higher conductivity or thinner shell, followed by the second release of the other droplets under low‐frequency electric field. The reported C‐Fibers provide novel multidelivery system for a wide range of applications that require controlled release of multiple ingredients in a prescribed sequence.  相似文献   

2.
Light‐responsive hydrogel particles with multi‐compartmental structure are useful for applications in microreactors, drug delivery and tissue engineering because of their remotely‐triggerable releasing ability and combinational functionalities. The current methods of synthesizing multi‐compartmental hydrogel particles typically involve multi‐step interrupted gelation of polysaccharides or complicated microfluidic procedures with limited throughput. In this study, a two‐step sequential gelation process is developed to produce agarose/alginate double network multi‐compartmental hydrogel particles using droplets assemblies induced by superhydrophobic surface as templates. The agarose/alginate double network multi‐compartmental hydrogel particles can be formed with diverse hierarchical structures showing combinational functionalities. The synthesized hydrogel particles, when loaded with polypyrrole (PPy) nanoparticles that act as photothermal nanotransducers, are demonstrated to function as near‐infrared (NIR) light triggerable and deformation‐free hydrogel materials. Periodic NIR laser switching is applied to stimulate these hydrogel particles, and pulsatile release profiles are collected. Compared with massive reagents released from single‐compartmental hydrogel particles, more regulated release profiles of the multi‐compartmental hydrogel particles are observed.  相似文献   

3.
Droplet‐based microfluidics enable the production of emulsions and microparticles with spherical shapes, but the high‐throughput fabrication of nonspherical emulsions and microparticles still remains challenging because interfacial tension plays a dominant role during preparation. Herein, ionic liquids (ILs) containing salts, which possess sufficient osmotic pressure to realize water transport and phase separation, are introduced as inner cores of oil‐in‐oil‐in‐water double emulsions and it is shown that nonspherical emulsions can be constructed by osmosis‐driven arrested coalescence of inner cores. Subsequently, ultraviolet polymerization of the nonspherical emulsions leads to nonspherical microparticles. By tailoring the number, composition, and size of inner cores as well as coalescence time, a variety of nonspherical shapes such as dumbbell, rod, spindle, snowman, tumbler, three‐pointed star, triangle, and scalene triangle are created. Importantly, benefitting from excellent solvency of ILs, this system can serve as a general platform to produce nonspherical microparticles made from different materials. Moreover, by controlling the osmotic pressure, programmed coalescence of inner cores in double emulsions is realizable, which indicates the potential to build microreactors. Thus, a simple and high‐throughput strategy to create nonspherical microparticles with arrested coalescence shapes is developed for the first time and can be further used to construct novel materials and microreactors.  相似文献   

4.
Droplet microfluidics has been widely applied in functional microparticles fabricating, tissue engineering, and drug screening due to its high throughput and great controllability. However, most of the current droplet microfluidics are dependent on water‐in‐oil (W/O) systems, which involve organic reagents, thus limiting their broader biological applications. In this work, a new microfluidic strategy is described for controllable and high‐throughput generation of monodispersed water‐in‐water (W/W) droplets. Solutions of polyethylene glycol and dextran are used as continuous and dispersed phases, respectively, without any organic reagents or surfactants. The size of W/W droplets can be precisely adjusted by changing the flow rate of dispersed and continuous phases and the valve switch cycle. In addition, uniform cell‐laden microgels are fabricated by introducing the alginate component and rat pancreatic islet (β‐TC6) cell suspension to the dispersed phase. The encapsulated islet cells retain high viability and the function of insulin secretion after cultivation for 7 days. The high‐throughput droplet microfluidic system with high biocompatibility is stable, controllable, and flexible, which can boost various chemical and biological applications, such as bio‐oriented microparticles synthesizing, microcarriers fabricating, tissue engineering, etc.  相似文献   

5.
A droplet‐based microfluidic method for the preparation of anisotropic gold nanocrystal dispersions is presented. Gold nanoparticle seeds and growth reagents are dispensed into monodisperse picoliter droplets within a microchannel. Confinement within small droplets prevents contact between the growing nanocrystals and the microchannel walls. The critical factors in translating macroscale flask‐based methods to a flow‐based microfluidic method are highlighted and approaches are demonstrated to flexibly fine tune nanoparticle shapes into three broad classes: spheres/spheroids, rods, and extended sharp‐edged structures, thus varying the optical resonances in the visible–near‐infrared (NIR) spectral range.  相似文献   

6.
Capillary microfluidic devices are used to prepare monodisperse polymersomes consisting of a hydrogel core and a bilayer membrane of amphiphilic diblock‐copolymers. To make polymersomes, water‐in‐oil‐in‐water double‐emulsion drops are prepared as templates through single‐step emulsification in a capillary microfluidic device. The amphiphile‐laden middle oil phase of the double‐emulsion drop dewets from the surface of the innermost water drop, which contains hydrogel prepolymers; this dewetting leads to the formation of a bilayer membrane. Subsequently, the oil phase completely separates from the innermost water drop, leaving a polymersome. Upon UV illumination of the polymersome, the prepolymers encapsulated within the interior are crosslinked, forming a hydrogel core. The hydrogel network within the polymersomes facilitates sustained release of the encapsulated materials and increases the stability of the polymersomes through the formation of a scaffold to support the bilayer. In addition, this approach provides a facile method to make monodisperse hydrogel particles directly dispersed in water.  相似文献   

7.
High-efficiency mixing is of fundamental importance for the successful development and application of lab-on-a-chip devices. In this report, we present the use of bioinspired thermally triggered liposomes for the controlled delivery and subsequent rapid mixing of reagents in a microfluidic device. In this technique, reagents are encapsulated inside the aqueous interior of liposomes that are dispersed evenly throughout a microfluidic system. Mixing of the encapsulated reagent and reaction do not occur until the reagent is released by a thermal trigger. This approach takes advantage of the dramatically increased lipid membrane permeability of liposomes near the gel-to-liquid phase transition temperature (T(m)) to deliver reagents at a precise location in the microfluidic device through the modulation of temperature. Implementation of this technique requires the encapsulation of the desired reagent in a liposome whose formulation has an appropriate T(m), as well as accurate spatial control of the temperature in the microfluidic device. As the liposomes are uniformly dispersed through the microfluidic channel, mixing occurs quite rapidly upon the release of the reagent. We demonstrate this technique by using several formulations of thermally triggered liposomes to release the hydrophilic fluorescent dyes at controlled locations in a polycarbonate microfluidic device. Additionally, we demonstrate a DNA labeling reaction using liposomes in a capillary-based microfluidic device. Under the conditions studied here, mixing and reaction are complete in approximately 200 microm of channel length. We believe this approach holds great promise for the performance of rapid high-throughput assays and in particular for biological analytes whose native environment is mimicked by the liposome.  相似文献   

8.
Triplet‐fusion‐based photon upconversion capsules with ultrathin double shells are developed through a single dripping instability in a microfluidic flow‐focusing device. An inner separation layer allows use of a brominated hydrocarbon oil‐based fluidic core, demonstrating significantly enhanced upconversion quantum yield. Furthermore, a perfluorinated photocurable monomer serves as a transparent shell phase with remote motion control through magnetic nanoparticle incorporation.  相似文献   

9.
A switchable electrode, which relies on an indium‐tin oxide conductive substrate coated with a self‐assembled monolayer terminated with an anthraquinone group (AQ), is reported as an electrowetting system. AQ electrochemical features confer the capability of yielding a significant modulation of surface wettability as high as 26° when its redox state is switched. Hence, an array of planar electrodes for droplets actuation is fabricated and integrated in a microfluidic device to perform mixing and dispensing on sub‐nanoliter scale. Vehiculation of cells across microfluidic compartments is made possible by taking full advantage of surface electrowetting in culture medium.  相似文献   

10.
Manipulation of nanoliter droplets is a key step for many emerging technologies including ultracompact microfluidics devices, 3D and flexible electronic printing. Despite progress, contamination‐free generation and release of nanoliter droplets by compact low‐cost devices remains elusive. In the present study, inspired by butterflies' minute manipulation of fluids, the authors have engineered a superamphiphobic bionic proboscis (SAP) layout that surpasses synthetic and natural designs. The authors demonstrate the scalable fabrication of SAPs with tunable inner diameters down to 50 µ m by the rapid gas‐phase nanotexturing of the outer and inner surfaces of readily available hypodermic needles. Optimized SAPs achieve contamination‐free manipulation of water and oil droplets down to a liquid surface tension of 26.56 mN m?1 and a volume of 10 nL. The unique potential of this layout is showcased by the rapid and carefully controlled in‐air synthesis of core‐shell droplets with well‐controlled compositions. These findings provide a new low‐cost tool for high‐precision manipulation of nanoliter droplets, offering a powerful alternative to established thermal‐ and electrodynamic‐based devices.  相似文献   

11.
12.
Molecularly crowded, polyelectrolyte/ribonucleotide‐enriched membrane‐free coacervate droplets are transformed into membrane‐bounded sub‐divided vesicles by using a polyoxometalate‐mediated surface‐templating procedure. The coacervate to vesicle transition results in reconstruction of the coacervate micro‐droplets into novel three‐tiered micro‐compartments comprising a semi‐permeable negatively charged polyoxometalate/polyelectrolyte outer membrane, a sub‐membrane coacervate shell, and an internal aqueous lumen. We demonstrate that organic dyes, ssDNA, magnetic nanoparticles and enzymes can be concentrated into the interior of the micro‐compartments by sequestration into the coacervate micro‐droplets prior to vesicle formation. The vesicle‐encapsulated proteins are inaccessible to proteases in the external medium, and can be exploited for the spatial localization and coupling of two‐enzyme cascade reactions within single or between multiple populations of hybrid vesicles dispersed in aqueous media.  相似文献   

13.
Chen F  Zhan Y  Geng T  Lian H  Xu P  Lu C 《Analytical chemistry》2011,83(22):8816-8820
The manipulation of cells inside water-in-oil droplets is essential for high-throughput screening of cell-based assays using droplet microfluidics. Cell transfection inside droplets is a critical step involved in functional genomics studies that examine in situ functions of genes using the droplet platform. Conventional water-in-hydrocarbon oil droplets are not compatible with chemical transfection due to its damage to cell viability and extraction of organic transfection reagents from the aqueous phase. In this work, we studied chemical transfection of cells encapsulated in picoliter droplets in fluorocarbon oil. The use of fluorocarbon oil permitted high cell viability and little loss of the transfection reagent into the oil phase. We varied the incubation time inside droplets, the DNA concentration, and the droplet size. After optimization, we were able to achieve similar transfection efficiency in droplets to that in the bulk solution. Interestingly, the transfection efficiency increased with smaller droplets, suggesting effects from either the microscale confinement or the surface-to-volume ratio.  相似文献   

14.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious‐metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double‐shelled hybrid nanocages with outer shells of Co‐N‐doped graphitic carbon (Co‐NGC) and inner shells of N‐doped microporous carbon (NC) by templating against core–shell metal–organic frameworks. The double‐shelled NC@Co‐NGC nanocages well integrate the high activity of Co‐NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn–air batteries. First‐principles calculations reveal that the high catalytic activities of Co‐NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow‐site C atoms with respect to the Co lattice in the Co‐NGC structure is a vital rate‐determining step to achieve excellent bifunctional electrocatalytic activity.  相似文献   

15.
Natural organisms are made of different types of microcompartments, many of which are enclosed by cell membranes. For these organisms to display a proper function, the microcompartments must be selectively permeable. For example, cell membranes are typically permeable toward small, uncharged molecules such as water, selected nutrients, and cell signaling molecules, but impermeable toward many larger biomolecules. Here, it is reported for the first time dynamic compartments, namely surfactant‐stabilized double emulsions, that display selective and tunable permeability. Selective permeability is imparted to double emulsions by stabilizing them with catechol‐functionalized surfactants that transport molecules across the oil shell of double emulsions only if they electrostatically or hydrophobically attract encapsulants. These double emulsions are employed as semipermeable picoliter‐sized vessels to controllably perform complexation reactions inside picoliter‐sized aqueous cores. This thus far unmet level of control over the transport of reagents across oil phases opens up new possibilities to use double emulsion drops as dynamic and selectively permeable microcompartments to initiate and maintain chemical and biochemical reactions in picoliter‐sized cell‐mimetic compartments.  相似文献   

16.
Droplet‐based microreactors are used for the continuous production of Pd nanocrystals. Specifically, commercially available polytetrafluoroethylene (PTFE) tube and silica capillaries are utilized to fabricate a fluidic device capable of generating water‐in‐oil droplets. In addition to the feasibility of using such droplets as microreactors for conducting a synthesis, the ability to control the composition and concentration of reagents by adjusting the flow rates is demonstrated; reagents are mixed by periodically pinching the PTFE tube, and nanocrystals are produced with uniform size distribution in a continuous fashion. The capability to tailor the size and shape of the resultant nanocrystals is further demonstrated by introducing the reducing agent and capping agent at different flow rates to control the nucleation and growth processes. The ability to transform a bulk synthesis into a droplet‐based system holds great potential for the development of a new route to the high‐volume production of nanocrystals.  相似文献   

17.
Higher order emulsions are used in a variety of different applications in biomedicine, biological studies, cosmetics, and the food industry. Conventional droplet generation platforms for making higher order emulsions use organic solvents as the continuous phase, which is not biocompatible and as a result, further washing steps are required to remove the toxic continuous phase. Recently, droplet generation based on aqueous two‐phase systems (ATPS) has emerged in the field of droplet microfluidics due to their intrinsic biocompatibility. Here, a platform to generate all‐aqueous double and triple emulsions by introducing pressure‐driven flows inside a microfluidic hybrid device is presented. This system uses a conventional microfluidic flow‐focusing geometry coupled with a coaxial microneedle and a glass capillary embedded in flow‐focusing junctions. The configuration of the hybrid device enables the focusing of two coaxial two‐phase streams, which helps to avoid commonly observed channel‐wetting problems. It is shown that this approach achieves the fabrication of higher‐order emulsions in a poly(dimethylsiloxane)‐based microfluidic device, and controls the structure of the all‐aqueous emulsions. This hybrid microfluidic approach allows for facile higher‐order biocompatible emulsion formation, and it is anticipated that this platform will find utility for generating biocompatible materials for various biotechnological applications.  相似文献   

18.
Due to the obvious distinctions in structure, core–shell nanostructures (CSNs) and yolk–shell nanostructures (YSNs) exhibit different catalytic behavior for specific organic reactions. In this work, two unique autoredox routes are developed to the fabrication of CeO2‐encapsulated Au nanocatalysts. Route A is the synthesis of well‐defined CSNs by a one‐step redox reaction. The process involves an interesting phenomenon in which Ce3+ can act as a weak acid to inhibit the hydrolysis of Ce4+ under the condition of OH? shortage. Route B is the fabrication of monodispersed YSNs by a two‐step redox reaction with amorphous Co3O4 as an in situ template. Furthermore, the transfer coupling of nitrobenzene is chosen as a probe reaction to investigate their catalytic difference. The CSNs can gradually achieve the conversion of nitrobenzene into azoxybenzene, while the YSNs can rapidly convert nitrobenzene into azobenzene. The different catalytic results are mainly attributed to their structural distinctions.  相似文献   

19.
Gu SQ  Zhang YX  Zhu Y  Du WB  Yao B  Fang Q 《Analytical chemistry》2011,83(19):7570-7576
We developed an automated and multifunctional microfluidic platform based on DropLab to perform flexible generation and complex manipulations of picoliter-scale droplets. Multiple manipulations including precise droplet generation, sequential reagent merging, and multistep solid-phase extraction for picoliter-scale droplets could be achieved in the present platform. The system precision in generating picoliter-scale droplets was significantly improved by minimizing the thermo-induced fluctuation of flow rate. A novel droplet fusion technique based on the difference of droplet interfacial tensions was developed without the need of special microchannel networks or external devices. It enabled sequential addition of reagents to droplets on demand for multistep reactions. We also developed an effective picoliter-scale droplet splitting technique with magnetic actuation. The difficulty in phase separation of magnetic beads from picoliter-scale droplets due to the high interfacial tension was overcome using ferromagnetic particles to carry the magnetic beads to pass through the phase interface. With this technique, multistep solid-phase extraction was achieved among picoliter-scale droplets. The present platform had the ability to perform complex multistep manipulations to picoliter-scale droplets, which is particularly required for single cell analysis. Its utility and potentials in single cell analysis were preliminarily demonstrated in achieving high-efficiency single-cell encapsulation, enzyme activity assay at the single cell level, and especially, single cell DNA purification based on solid-phase extraction.  相似文献   

20.
Triple‐negative breast cancer (TNBC) is highly aggressive and insensitive to conventional targeted therapies, resulting in poor therapeutic outcomes. Recent studies have shown that abnormal iron metabolism is observed in TNBC, suggesting an opportunity for TNBC treatment via the iron‐dependent Fenton reaction. Nevertheless, the efficiency of current Fenton reagents is largely restricted by the lack of specificity and low intracellular H2O2 level of cancer cells. Herein, core–shell–satellite nanomaces (Au @ MSN@IONP) are fabricated, as near‐infrared (NIR) light‐triggered self‐fueling Fenton reagents for the amplified Fenton reaction inside TNBC cells. Specifically, the Au nanorod core can convert NIR light energy into heat to induce massive production of intracellular H2O2, thereby the surface‐decorated iron oxide nanoparticles (IONP) are being fueled for robust Fenton reaction. By exploiting the vulnerability of iron efflux in TNBC cells, such a self‐fueling Fenton reaction leads to highly specific anti‐TNBC efficacy with minimal cytotoxicity to normal cells. The PI3K/Akt/FoxO axis, intimately involved in the redox regulation and survival of TNBC, is demonstrated to be inhibited after the treatment. Consequently, precise in vivo orthotopic TNBC ablation is achieved under the guidance of IONP‐enhanced magnetic resonance imaging. The results demonstrate the proof‐of‐concept of NIR‐light‐triggered self‐fueling Fenton reagents against TNBC with low ferroportin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号