首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The fatty chain compositions of 1-O-alk-1′-enyl-2-acyl, 1-0-alkyl-2-acyl, and 1,2-diacyl glycerophospholipids of the Japanese oysterCrassostrea gigas (Thunberg) were investigated. Major fatty chains in thesn-1 position of 1-alk-1′-enyl-2-acyl ethanolamine phospholipids (EPL) were 18∶0 (64.7%) and 20∶1 (11.1%). Majorsn-1 chains of alkenylacyl choline phospholipids (CPL) were 18∶0 (63.3%) and 16∶0 (22.2%). In the case of 1-alkyl-2-acyl EPL, the predominant fatty chains in thesn-1 position were 18∶0 (51.5%), 16∶0 (16.0%) and 20∶1 (12.5%); in the case of 1-alkyl-2-acyl CPL, the majorsn-1 chains were 16∶0 (44.0%) and 14∶0 (23.4%). Saturated fatty chains were predominant in both EPL and CPL. Prominent fatty acids in thesn-2 position of the alkenylacyl EPL were 22∶6n−3 (29.0%), 20∶5n−3 (19.0%) and 22∶2 NMID (non-methylene interrupted dienes, 16.6%) contributing to about 65% of the total fatty acids, while alkenylacyl CPL was rich in the saturated acids 16∶0 (32.0%) and 18∶0 (9.2%). In the alkylacyl EPL, 16∶0, 18∶1n−9, 18∶0 and 16∶1n−7 were prominentsn-2 fatty acids and accounted for 30.6%, 10.0%, 9.8%, and 8.3%, respectively. Polyunsaturated fatty acids were detected, but were present at extremely low percentages. Majorsn-2 fatty acids in alkylacyl CPL were 16∶0 (25.4%), 22∶6n−3 (16.0%) and 20∶5n−3 (8.4%). The major fatty acids of diacyl EPL were 20∶5n−3 (22.3%), 16∶0 (17.9%), and 18∶0 (16.1%), and those of diacyl CPL were 16∶0 (30.4%), 20∶5n−3 (17.6%) and 18∶1n−7 (7.4%).  相似文献   

2.
Molecular species of 1-O-alk-1′-enyl-2-acyl-, 1-O-alkyl-2-acyl-, and 1,2-diacyl-sn-glycero-3-phosphoethanolamine (EPL) andsn-glycero-3-phosphocholine (CPL) of Japanese oysterCrassostrea gigas were analyzed by selectedion monitoring gas chromatography/mass spectrometry using electron impact ionization. The characteristic fragment ions, [RCH=CH+56]+ due to the alkenyl residue in thesn-1 position and [RCO+74]+ due to the acyl residue in thesn-2 position of alkenylacylglycerols, [R+130]+ due to the alkyl residue in thesn-1 position and [RCO+74]+ due to the acyl residue in thesn-2 position of alkylacylglycerols, [RCO+74]+ due to the acyl residues in thesn-1 and/orsn-2 positions of diacylglycerols, and [M−57]+ being indicative of the corresponding molecular weight, were used for structural assignments. For alkenylacyl EPL and CPL, 19 and 16 molecular species were determined, respectively. Two molecular species, 18∶0alkenyl-22∶6n−3 and 18∶0-alkenyl-22∶2-non-methylene interrupted diene (NMID), amounted to 53.2% and 47.9%, respectively. The alkylacyl EPL and CPL consisted of 16 and 20 molecular species, respectively, and the prominent components were 18∶0alkyl-22∶2NMID, 20∶1alkyl-20∶1n−11 (27.4%) and 20∶1alkyl-20∶2NMID (16.3%) in the former, and 16∶0alkyl-20∶5n−3 (23.0%) and 16∶0alkyl-22∶6n−3 (21.6%) in the latter. For the diacyl EPL and CPL, 14 and 51 molecular species were determined, respectively. The major molecular species were 18∶0–20∶5n−3 (37.4%), 16∶0–20∶5n−3 (14.2%) and 18∶1n−7–22∶2NMID (13.2%) in the former, and 16∶0–20∶5n−3 (33.4%) and 16∶0–22∶6n−3 (22.3%) in the latter. It was found that there were significant differences in the molecular species between the alkylacyl and diacyl EPL and the alkylacyl and diacyl CPL; the number of molecular species was larger in CPL than in EPL, while the number of total carbons and double bonds of the major molecular species were larger in the EPL than in the CPL. Alkenylacyl EPL were similar to alkenylacyl CPL in molecular species composition.  相似文献   

3.
M. V. Bell  J. R. Dick 《Lipids》1993,28(1):19-22
Ethanolamine glycerophospholipids from the brains of both trout and cod comprised 36–38% of 1-O-alk-1′-enyl-2-acyl-glycerophosphoethanolamine (GPE) determined using two methods. In 1-O-alk-1′-enyl-2-acyl-GPE from trout brain, the main molecular species were 18∶1a/18∶1, 18∶0a/18∶1 and 16∶0a/18∶1, which totalled 63.3%, while polyunsaturated fatty acid (PUFA) containing species totalled only 18.2%. 1-O-Alk-1′-enyl-2-acyl-GPE from cod brain was much more unsaturated with PUFA containing species totalling 52.6%, of which 18∶0a/20∶5n−3, 18∶1a/20∶5n−3 and 18∶1a/22∶6n−3 were predominant. In cod 18∶1a/18∶1, 18∶0a/18∶1 and 16∶0a/18∶1 were the only other species present at over 5% each, totalling 31.8%. In both cod and trout, small amounts of species containing 22∶4n−6 were found. The results of this and earlier studies indicate that there is considerable specificity of composition at the level of molecular species between different lipid classes and subclasses. Molecular species of 1-O-alk-1′-enyl-2-acyl-GPE are abbreviated as follows:e.g., 16∶0a/18∶1 GPE is 1-O-hexadec-1′-enyl-2-oleoyl-sn-glycero-3-phosphoethanolamine. The corresponding diacyl species, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, is abbreviated as 16∶0/18∶1.  相似文献   

4.
The contents and compositions of the 1-O-alk-1′-enyl-2-acyl, 1-O-alkyl-2-acyl, and 1,2-diacyl glycerophospholipids in the muscle and viscera of the ascidianHalocynthia roretzi, and of the gonad of the sea urchinStrongylocentrotus intermedius, which are eaten to some extent in Alaska and in Asia, were analyzed by gas-liquid chromatography. 1-O-Alk-1′-enyl-2-acyl glycerophospholipids were found in all of the samples, accounting for 64.4–69.0% of the ethanolamine glycerophospholipid (EPL). By contrast, the levels of the 1-O-Alk-1′-enyl-2-acyl choline glycerophospholipids (CPL) were low (3.1–5.7%). CPL was rich in the 1-O-alkyl-2-acyl subclass amounting to 12.5–23.9% in the ascidian sample. The level of CPL in the sea urchin gonad was extremely high, amounting to 46.1%. The most prominent alkyl chains in thesn-1 position of CPL from the ascidian muscle were 16∶0 (44.6%), 18∶1 (26.5%), and 18∶0 (10.7%), and of CPL from the sea urchin gonad were 18∶0 (36.2%), 16∶0 (33.0%), and 18∶1 (17.8%). Unusually high levels of odd-numbered alkyl chains, e.g., 19∶0 andanteiso 17∶0, were detected in the CPL of all samples. The prominent alkenyl chains of EPL were 18∶0 (69.4%), 16∶0 (10.0%), and 18∶1 (8.54%) (not counting the vinyl double bond) for the sea urchin gonad. Relatively high levels of 20∶1 alkenyl chains were also present. The glycerolsn-2 positions contained high proportions of polyunsaturated fatty acids. Thus, 20∶5n-3 (43.6%) and 22∶6n-3 (20.1%) were most abundant in the alkylacyl CPL from the ascidian muscle and 20∶5n-3 (54.9%) and 20∶4n-6 (30.1%) in alkylacyl CPL from the sea urchin gonad. Despite a possible interconversion of the alkyl and alkenyl chains of each class of the ether phospholipids, they showed few features in common.  相似文献   

5.
The molecular species composition of the major glycerophospholipids from white matter of human brain were determined by high-performance liquid chromatography of the 3,5-dinitrobenzoyl derivatives of the corresponding diradylglycerols. In phosphatidylcholine (PC) and phosphatidylserine (PS), molecular species containing only saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) comprised 85.7 and 82.4% of the respective totals, with 18∶0/18∶1 predominant in PS and 16∶0/18∶1 in PC. These molecular species were also abundant in phosphatidylethanolamine (PE), but in this phospholipid species containing polyunsaturated fatty acids (PUFA), largely 18∶0/22∶6n−3 and 18∶0/20∶4n−6, accounted for over half the total; 18∶1/18∶1 was also abundant in PE. In contrast, 1-O-alk-1′-enyl-2-acylsn-glycero-3-phosphoethanolamine (GPE) had much more SFA- and MUFA-containing species, predominantly 16∶0a/18∶1, 18∶0a/18∶1 and 18∶1a/18∶1, with low amounts of species containing 20∶4n−6 and 22∶6n−3. In alkenylacyl GPE, 22∶4n−6 was the major PUFA and 16∶0a/22∶4n−6 and 18∶1a/22∶4n−6 the main PUFA-containing species. There was six times more 22∶6n−3, twice as much 20∶4n−6 and half the amount of 22∶4n−6 in PE as compared to alkenylacyl GPE. Molecular species are abbreviated as follows:e.g., 16∶0/18∶1 PE is 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine; the corresponding alkenylacyl species, 1-O-hexadec-1′-enyl-2-oleoyl-sn-glycero-3-phosphoethanolamine is 16∶0a/18∶1.  相似文献   

6.
This study examined the effects of n−3 and n−6 polyunsaturated fatty acid alimentation on murine peritoneal macrophage phospholipids. Mice were fed complete diets supplemented with either corn oil predominantly containing 18∶2n−6, borage oil containing 18∶2n−6 and 18∶3n−6, fish/corn oil mixture containing 18∶2n−6, 20∶5n−3 and 22∶6n−3, or fish/borage oil mixture containing 18∶2n−6, 18∶3n−6, 20∶5n−3 and 22∶6n−3. After two weeks, the fatty acid levels of glycerophosphoserines (GPS), glycerophosphoinositols (GPI), sphingomyelin (SPH), and of the glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE) phospholipid subclasses were determined. We found that mouse peritoneal macrophage GPC contain primarily 1-0-alkyl-2-acyl (range for the dietary groups, 24.6–30.5 mol %) and 1,2-diacyl (63.2–67.2 mol %), and that GPE contains 1-O-alk-1-enyl-2-acyl (40.9–47.4 mol. %) and 1,2-diacyl (44.2–51.2 mol %) subclasses. In general, fish oil feeding increased macrophage 20∶5n−3, 22∶5n−3 and 22∶6n−3 levels while simultaneously reducing 20∶4n−6 in GPS, GPI, GPE and GPC subclasses except for 1-O-alk-1′-enyl-2-acyl GPC. Administration of 18∶3n−6 rich diets (borage and fish/borage mixture) resulted in the accumulation of 20∶3n−6 (2-carbon elongation product of 18∶3n−6) in most phospholipids. In general, the novel combination of dietary 18∶3n−6 and n−3 PUFA produced the highest 20∶3n−6/20∶4n−6 phospholipid fatty acid ratios. This study demonstrates that marked differences in the responses of macrophage phospholipid classes and subclasses exist following dietary manipulation. The reduction of 20∶4n−6, while simultaneously increasing 30∶3n−6 and n−3 PUFA levels, may be important in relation to the putative beneficial effects of 20∶3n−6 and fish oil on macrophage eicosanoid and platelet activating factor (PAF) biosynthesis.  相似文献   

7.
In this study, the 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine content of human platelets was determined. The distribution of arachidonate among the 1,2-diacyl, 1-O-alkyl-2-acyl, and 1-O-alk-l′-enyl-2-acyl classes of choline- and ethanolamine-containing phosphoglycerides was also assessed. The major platelet phospholipids were choline-containing phosphoglycerides (38%), ethanolamine-containing phosphoglycerides (25%) and sphingomyelin (18%), with smaller amounts of phosphatidylserine (11%) and phosphatidylinositol (4%). In addition to the diacyl class, the choline-linked fraction was found to contain both 1-O-alkyl-2-acyl (10%) and 1-O-alk-l′-enyl-2-acyl (9%) species. The ethanolamine-linked fraction, on the other hand, had an elevated level of the 1-O-alk-l′-enyl-2-acyl (60%) species and a small amount of the 1-O-alkyl-2-acyl component (4%). The major fatty acyl residues found in all classes of the choline and ethanolamine phospholipids were 16∶0, 18∶0, (Δ9), 18∶2(n−6) and 20∶4(n−6). The 1-O-alk-l and 1-O-alk-l′-enyl fraction of the ethanolamine-linked phospholipids also contained substantial amounts of 22∶4(n−6), 22∶5(n−3) and 22∶6(n−3) acyl chains. Arachidonate comprised 44% of the acyl residues in thesn-2 position of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine. Corresponding values for the diacyl and 1-O-alk-l′-enyl-2-acyl species were 23% and 25%, respectively, based on all 20∶4(n−6) being linked to thesn-2 position of all classes. In the ethanolamine-linked phosphoglycerides, arachidonate constituted 60%, 20% and 68% of the acyl groups in thesn-2 position of the 1,2-diacyl, 1-O-alkyl-2-acyl and 1-O-alk-l′-enyl-2-acyl classes, respectively. The content of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine appears sufficient to support the synthesis of platelet activating factor by a deacylation-reacylation pathway in platelets. Our findings also demonstrate that human platelets contain a significant amount of 1-O-alkyl-2-arachidonyl-sn-glycero-3-phosphocholine that could possibly serve as a precursor of both platelet activating factor and bioactive arachidonate metabolites.  相似文献   

8.
The existence of ether-linked phospholipids, including 1-O-alk-1′-enyl-2-acyl and 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholines and ethanolamines in bonitoEuthynnus pelamis (Linnaeus) white muscle, was investigated by gas chromatography and gas chromatography-mass spectrometry. Chemical ionization (iso-butane) mass spectrometry of trimethylsilyl ethers derived from the corresponding ether-linked glycerophospholipids proved effective not only for determining molecular weights but also for structural identification based on the ions [M−R]+, [M−RO]+ and [M+1]+. 1-O-Alk-1′-enyl-2-acyl-sn-glycero-3-phosphocholine and ethanolamine accounted for 3.0–6.0% and 3.6–7.6% of the total glycerophospholipids, respectively. 1-O-Alkyl-2-acyl-sn-glycero-3-phosphocholine and ethanolamine were also determined for one fish and accounted for 1.4% and 0.6% of the total glycerophospholipids, respectively. The predominant long chains in thesn-1 position of the glycerol moieties were 16∶0, 18∶0 and 18∶1 in the case of the alkenylacyl and alkylacyl components. Fatty acid distribution of individual glycerophospholipids was also determined.  相似文献   

9.
Previous studies in our laboratory have shown that marine oils, with high levels of eicosapentaenoic (EPA, 20∶5n−3) and docosahexaenoic acids (DHA, 22∶6n−3), inhibit the growth of CT-26, a murine colon carcinoma cell line, when implanted into the colons of male BALB/c mice. Anin vitro model was developed to study the incorporation of polyunsaturated fatty acids (PUFA) into CT-26 cells in culture. PUFA-induced changes in the phospholipid fatty acid composition and the affinity with which different fatty acids enter the various phospholipid species and subspecies were examined. We found that supplementation of cultured CT-26 cells with either 50 μM linoleic acid (LIN, 18∶2n−6), arachidonic acid (AA, 20∶4n−6), EPA, or DHA significantly alters the fatty acid composition of CT-26 cells. Incorporation of these fatty acids resulted in decreased levels of monounsaturated fatty acids, while EPA and DHA also resulted in lower levels of AA. While significant elongation of both AA and EPA occurred, LIN remained relatively unmodified. Incorporation of radiolabeled fatty acids into different phospholipid species varied significantly. LIN was incorporated predominantly into phosphatidylcholine and had a much lower affinity for the ethanolamine phospholipids. DHA had a higher affinity for plasmenylethanolamine (1-O-alk-1′-enyl-2-acyl-sn-glycero-3-phosphoethanolamine) than the other fatty acids, while EPA had the highest affinity for phosphatidylethanol-amine (1,2-diacyl-sn-glycero-3-phosphoethanolamine). These results demonstrate that,in vitro, significant differences are seen between the various PUFA in CT-26 cells with respect to metabolism and distribution, and these may help to explain differences observed with respect to their effects on tumor growth and metastasis in the transplantable model.  相似文献   

10.
The lipid composition of the pineal organ from the rainbow trout (Oncorhynchus mykiss) was determined to establish whether the involvement of this organ in the control of circadian rhythms is reflected by specific adaptations of lipid composition. Lipid comprised 4.9% of the tissue wet weight and triacylglycerols were the major lipid class present (47% of total lipid). Phosphatidylcholine (PC) was the principal polar lipid, and smaller proportions of other phospholipids and cholesterol were also present. Plasmalogens contributed 11% of the ethanolamine glycerophospholipids (EGP). No cerebrosides were detected. The fatty acid composition of triacylglycerols was generally similar to that of total lipids in which saturated, monounsaturated and polyunsaturated fatty acids (PUFA) were present in almost equal proportions. Each of the polar lipid classes had a specific fatty acid composition. With the exception of phosphatidylinositol (PI), in which 20∶4n−6 comprised 27.4% of the total fatty acids, 22∶6n−3 was the principal PUFA in all lipid classes. The proportion of 20∶5n−3 never exceeded 6.0% of the fatty acids in any lipid class. The predominant molecular species of PC were 16∶0/22∶6n−3 and 16∶0/18∶1, which accounted for 33.2 and 28.5%, respectively, of the total molecular species of this phospholipid. Phosphatidylethanolamine (PE) contained the highest level of di-22∶6n−3 (13.0%) of any phospholipid. There was also 4.9% of this molecular species in phosphatidylserine (PS) and 4.1% in PC. In PE, the species 16∶0/22∶6, 18∶1/22∶6 and 18∶0/22∶6 totalled 45.1%, while in PS 18∶0/22∶6 accounted for 43.9% of the total molecular species. The most abundant molecular species of PI was 18∶0/20∶4n−6 (37.8%). The lipid composition of the pineal organ of trout, and particularly the molecular species composition of PI, is more similar to the composition of the retina than that of the brain. Molecular species are abbreviated as follows: e.g., 16∶0/22∶6 PC is 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine.  相似文献   

11.
This study was undertaken to determine if rabbit neutrophils contain sufficient ether-linked precursor for the synthesis of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activatin factor) by a deacylation-reacylation pathway. The phospholipids from rabbit peritoneal polymorphonuclear neutrophils were purified and quantitated, and the choline-containing and ethanolamine-containing phosphoglycerides were analyzed for ether lipid content. Choline-containing phosphoglycerides (37%), ethanolamine-containing phosphoglycerides (30%), and sphingomyelin (28%) were the predominant phospholipid classes, with smaller amounts of phosphatidylserine (5%) and phosphatidylinositol (<1%). The choline-linked fraction contained high amounts of 1-O-alkyl-2-acyl-(46%) and 1,2-diacyl-sn-glycero-3-phosphocholine (54%), with a trace of the 1-O-alk-1′-enyl-2-acyl species. The ethanolamine-linked fraction contained high amounts of 1-O-alk-1′-enyl-2-acyl-(63%) and 1,2-diacyl-sn-glycero-3-phosphoethanolamine (34%), and a low quantity of the 1-O-alkyl-2-acyl species (3%). The predominant 1-O-alkyl ether chains found in thesn-1 position of the choline-linked fraction were 16∶0 (35%), 18∶0 (14%), 18∶1 (26%), 20∶0 (16%), and 22∶0 (9%). The major 1-O-alk-1′-enyl ether chains found in thesn-1 position of the ethanolamine-linked fraction were 14∶0 (13%), 16∶0 (44%), 18∶0 (27%), 18∶1 (12%) and 18∶2 (3%). The major acyl groups in thesn-1 position of 1,2-diacyl-sn-glycero-3-phosphocholine and 1,2-diacyl-sn-glycero-3-phosphoethanolamine were 16∶0, 18∶0 and 18∶1. The most abundant acyl group in thesn-2 position of all classes of choline- and ethanolamine-linked phosphoglycerides was 18⩺2. Although this work does not define the biosynthetic pathway for platelet activating factor, it does show that there is ample precursor present to support its synthesis by a deacylation-reacylation pathway.  相似文献   

12.
Long-chain n−3 polyunsaturated fatty acids (n−3 PUFA) of marine oils are important dietary components for both infants and adults, and are incorporated into milks following maternal dietary intake. However, little is known about the hydrolysis of these PUFA from milk triglycerides (TG) by lipases in suckling young. Seals, like humans, possess gastric lipase; however, the milk lipids of seals and sea lions are almost devoid of the readily hydrolyzable medium-chain fatty acids, and are characterized by a large percentage (10–30%) of n−3 PUFA. Gastric hydrolysis of milk lipids was studiedin vivo in suckling pups of three species (the California sea lion, the harp seal and the hooded seal) in order to elucidate the actions and specificity of gastric lipases on milk TG in relation to fatty acid composition and TG structure. Regardless of milk fat content (31–61% fat) or extent of gastric hydrolysis (10–56%), the same fatty acids were preferentially released in all three species, as determined by their relative enrichment in the free fatty acid (FFA) fraction. In addition to 16∶1 and 18∶0, these were the PUFA of 18 carbons and longer, except for 22∶6n−3. Levels of 20∶5n−3 were most notably enriched in FFA, at up to five times that found in the TG. Although 22∶6n−3 was apparently also released from the TG (reduced in the diglyceride), it was also notably reduced in FFA. Positional analysis of milk TG based on the products of Grignard hydrolysis revealed that these PUFA, including 22∶6n−3, were preferentially esterified at the α-position of the TG, and that the fatty acids not released during gastric hydrolysis were located at thesn-2 position. The extreme reduction of 22∶6n−3 and enrichment of 20∶5n−3 in FFA is discussed. Results from this study are consistent with reports that gastric lipase acts stereo-specifically to release fatty acids at the α-positions (sn−3,sn−1). We conclude that the n−3 PUFA in milk are efficiently hydrolyzed by gastric lipase and that this has important implications for digestion of milks enriched in PUFA by neonates in general. Based on a paper presented at the Symposium on Milk Lipids held at the AOCS Annual Meeting, Baltimore, MD, April 1990; part of this work is from the doctoral dissertation by S.J.I., University of Maryland, 1988.  相似文献   

13.
Phospholipids of the fungiConidobolus nanodes, Entomophthora exitalis andSaprolegnia parasitica were extracted and analyzed. The phospholipid content was the same (2.4%) for the three species and was independent of the total lipid content. Phospholipase A2 degradation of individual phospholipid classes showed an asymmetrical distribution of polyunsaturated fatty acids (PUFA) between the two fatty acyl positions of glycerol. There was a predominance of n-6 PUFA at position 2 and a predominance of n-3 PUFA at position 1. WithC. nanodes andE. exitalis, 20∶5n−3 is derived from 18∶3n−3 and is located predominantly at position 1. InS. parasitica 20∶5n−3 is synthesized from 18∶3n−6via 20∶4n−6 and is located predominantly at position 2. It is suggested that the asymmetrical distribution of PUFA between positions 1 and 2 of glycerol Points towards different sites of synthesis of the two classes of PUFA, and that cross-over between PUFA of the different types is prevented by thesn-1 orsn-2 positional specificity of the desaturases.  相似文献   

14.
Adequate accumulation of polyunsaturated essential fatty acids, in particular docosahexaenoic acid (22∶6n−3), into membrane phospholipids is critical for optimal fetal brain development. This process is maximal during the period of rapid neurite outgrowth, neuritogenesis, which precedes the major growth phase, myelination. There is no information about differential changes during gestation to individual brain phospholipid molecular species which contain 22∶6n−3. Such details of brain development would be concealed by total fatty acid analysis of isolated phospholipid classes. We have detailed phosphatidylcholine (PC) and phosphatidylethanolamine (PE) molecular species compositions in developing fetal guinea pig brain. Total brain PC concentration increased substantially between 40 and 68 (term) d of gestation, corresponding to myelination, while PE increased in a biphasic manner between 25–35 d, which was coincident with onset of neuritogenesis, and 40–68 d. Fetal brain development was accompanied by complex changes in the concentration of individual phospholipid molecular species. During early gestation (25–40 d) 22∶6n−3 was enriched in both PC and PEsn−1 16∶0 molecular species. However, between 40 d and term there was no further increase in brain PC 22∶6n−3 content, while brain PE was significantly enriched in both PE 18∶1/22∶6 and PE18∶0/22∶6. We hypothesize that accumulation of 22∶6n−3 intosn−1 18∶1 and 18∶0 species represents establishment of a 22∶6n−3-containing membrane PE pool which may be turned over more slowly thansn−1 16∶0 species. Identification of specific changes in membrane phospholipids which are associated with defined events in brain development may provide a basis for assigning functional roles to individual molecular species.  相似文献   

15.
The effects of clofibrate on the content and composition of liver and plasma lipids were studied in mice fed for 4 wk on diets enriched in n−6 or n−3 polyunsaturated fatty acids (PUFA) from sunflower oil (SO) or fish oil (FO), respectively; both oils were fed at 9% of the diet (dry weight basis). Only FO was hypolipidemic. Both oil regimes led to slightly increased concentrations of phospholipids (PL) and triacylglycerols (TG) in liver as compared with a standard chow diet containing 2% fat. Clofibrate promoted hypolipidemia only in animals fed SO. Its main effect was to enlarge the liver, such growth increasing the amounts of major glycerophospholipids while depleting the TG. SO and FO consumption changed the proportion of n−6 or n−3 PUFA in liver and plasma lipids in opposite ways. After clofibrate action, the PUFA of liver PL were preserved better than in the absence of oil supplementation. However, most of the drug-induced changes (e.g., increased 18∶1n−9 and 20∶3n−6, decreased 22∶6/20∶5 ratios) occurred inrrespective of lipids being rich in n−6 or n−3 PUFA. The concentration of sphingomyelin (SM), a minor liver lipid that virtually lacks PUFA, increased with the dietary oils, decreased with clofibrate, and changed its fatty acid composition in both situations. Thus. oil-increased SM had more 22∶0 and 24∶0 than clofibrate-decreased SM, which was significantly richer in 22∶1 and 24∶1.  相似文献   

16.
Incorporation of polyunsaturated fatty acids (PUFA), particularly 22∶6n−3, into fetal brain at specific gestational ages is critical for development of normal brain function. We have studied adaptations to maternal liver phospholipid molecular species compositions that may be related to the supply of PUFA to fetal brain. The increment of 22∶6n−3 in brain phosphatidylethanolamine (PE) was maximal at day 25 to day 35 of gestation, consistent with early prenatal development of guinea pig brain. At the same gestational ages, there was a transient increase in maternal liver concentration of 16∶0/22∶6 phosphatidylcholine (PC), which preceded the progressive increase in total PC concentration toward term (day 68). This effect was specific for thesn-1 16∶0 species, as, there was no significant increase in 18∶0/22∶6 PC concentration. These results are consistent with a specific role for 16∶0/22∶6 PC in the directed supply of 22∶6n−3 from maternal liver to the fetus. Concentrations of all PE species in maternal liver decreased at day 25 and day 35 of gestation. The gradual accumulation of 22∶6n−3 in fetal liver throughout gestation did not correlate with the pattern of acquisition of 22∶6n−3 into fetal brain PE. Maternal plasma PC and cholesterol concentrations decreased dramatically by day 25 of gestation, and remained low until term. This hypolipidemia of pregnancy in the guinea pig may be due to increased lipase-mediated turnover of plasma lipoproteins and contrasts strongly with the well-characterized hyperlipidemia in human and rat gestation.  相似文献   

17.
Atlantic salmon post-smolts were fed diets rich in linoleic acid (sunflower oil, SO), α-linolenic acid (linseed oil, LO) or long-chain polyunsaturated fatty acids (fish oil, FO) for a period of 12 wk. In the liver phospholipids of fish fed SO, the levels of 18∶2n−6, 20∶2n−6, 20∶3n−6 and 20∶4n−6 were significantly elevated compared to both other treatment. In choline phospholipids (CPL), ethanolamine phospholipids (EPL) and phosphatidylserine (PS) the levels of 22∶4n−6 and 22∶5n−6 were significantly elevated in fish fed SO. In liver phospholipids from fish fed LO, 18∶2n−6, 20∶2n−6 and 20∶3n−6 were significantly elevated but 20∶4n−6, 22∶4n−6 and 22∶5n−6 were similar or significantly decreased compared to fish fed FO. Liver phospholipids from fish fed LO had increased 18∶3n−3 and 20∶4n−3 compared to both other treatments while EPL and phosphatidylinositol (PI) also had increased 20∶5n−3. In fish fed LO, 22∶6n−3 was significantly reduced in CPL, PS and PI compared to fish fed FO. Broadly similar changes occurred in gill phospholipids. Production of 12-lipoxygenase metabolites in isolated gill cells stimulated with the Ca2+-ionophore A23187 were significantly reduced in fish fed either SO or LO compared to those fed FO. However, the ratio 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE)/12-hydroxy-5,8,10,14,17-eicosapentaenoic acid (12-HEPE) was significantly elevated in stimulated gill cells from SO-fed fish. Although mean values of thromboxane B2 (TXB2) and prostaglandin E2 (PGE2) were increased in fish fed SO, they were not significantly different from those of the other two treatments.  相似文献   

18.
The sn-position of FA in membrane lipids has an influence on the physiological function of cells, is predictive for diseases, and therefore is useful for diagnostics. The current study compares the compositions of acyl chain substituents in the sn-1 and sn-2 positions of the glycerol backbones of phospholipids derived from human erythrocytes by using RP-HPLC coupled with on-line electrospray ionization ion trap MS. Preferential loss of the acyl group in the sn-1 position was used to determine the degree of regiospecific preference exhibited by the phospholipid molecules. The identities of the molecular species and the positions of the acyl substituents were identified using product-ion spectra of major precursor ions selected from the mass spectra averaged across peaks in the total ion chromatogram. Saturated FA were found to be located mainly in the sn-1 position of the glycerol backbones of erythrocyte phospholipids, whereas PUFA were found primarily in the sn-2 position. All measured phospholipids revealed palmitic acid (16∶0) at the sn-1 position. Linoleic acid (18∶2n−6) and arachidonic acid (20∶4n−6) were found to be attached exclusively to the sn-2 position of the backbone, whereas eicosadienoic (20∶2n−6) and eicosatrienoic acid (20∶3n−9) occurred in both positions of the backbone of PC. Oleic (18∶1n−9), linoleic (18∶2n−6), and octadecatrienoic (18∶3) acids of PE and PS were linked to both positions. Lignoceric acid (24∶1n−9) was found to be strictly localized at the sn-2 position, whereas nervonic (24∶1n−9) acid of PS was associated with both positions of the backbone. A detailed analysis of the blood cell membrane lipids by MS might be helpful to characterize postprandial kinetics of pharmacological or dietary lipid applications, as well as environmental influences on cell membranes.  相似文献   

19.
L. Amate  M. Ramírez  A. Gil 《Lipids》1999,34(8):865-871
Four sources of long-chain polyunsaturated fatty acids (LCP) differing in their chemical structure (triglycerides or phospholipids) and in their origin (tuna triglycerides, fungal triglycerides, egg phospholipids, and pig brain phospholipids) were analyzed to determine the distribution of the component fatty acids within the molecule. Lipase and phospholipase A2 hydrolysis was performed to obtain 2-monoacylglycerols and lysophospholipids, respectively, which allowed us to determine the distribution of fatty acids between the sn-2 and sn-1,3 positions of triglycerides or between the sn-1 and sn-2 position of phospholipids. Fatty acids in the LCP sources analyzed were not randomly distributed. In tuna triglycerides, half of the total amount of 22∶6n−3 was located at the sn-2 position (49.52%). In fungal triglycerides, 16∶0 and 18∶0 were esterified to the sn-1,3 (92.22% and 91.91%, respectively) 18∶1 and 18∶2 to the sn-2 position (59.77% and 62.62%, respectively), and 45% of 20∶3n−6 and only 21.64% of 20∶4n−6 were found at the sn-2 position. In the lipid sources containing phospholipids, LCP were mainly esterified to the phosphatidylethanolamine fraction. In egg phospholipids, most of 20∶4n−6 (5.50%, sn-2 vs. 0.91%, sn-1) and 22∶6n−3 (2.89 vs. 0.28%) were located at the sn-2 position. In pig brain phospholipids, 22∶6n−3 was also esterified to the sn-2 (13.20 vs. 0.27%), whereas 20∶4n−6 was distributed between the two positions (12.35 vs. 5.86%). These results show a different fatty acid composition and distribution of dietary LCP sources, which may affect the absorption, distribution, and tissue uptake of LCP, and should be taken into account when supplementing infant formulas.  相似文献   

20.
The polyunsaturated fatty acid (PUFA) composition of murine peritoneal macrophage phospholipids was dramatically altered in vivo following the four-wk feeding of specific dietary oils. Fish oil (containing 20∶5n–3 and 22∶6n−3) feeding significantly increased macrophage 20∶5n−3, 22∶5n−3, and 22∶6n−3 (P<0.05), while borage oil (containing 18∶2n−6 and 18∶3n−6) increased (P<0.05) the macrophage 20∶3n−6/20∶4n−6 ratio, relative to safflower oil (containing 18∶2n−6) and hydrogenated coconut oil (containing 12∶0)-fed animals. The macrophage phospholipid PUFA profiles were compared with those of the liver, lung and spleen. The significance of the PUFA alterations is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号