首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of the mathematical model of a two–phase two–velocity medium, detonation of a cryogenic mixture (gaseous hydrogen—drops of liquid oxygen) was studied numerically. The dynamics of formation and the special features of the structure of the two–dimensional reaction zone of the detonation wave are discussed. The cellular structure of detonation is modeled for the first time for a cryogenic hydrogen—oxygen spray.  相似文献   

2.
A chemical treatment to remove residual CeO2 phase on CeO2–ZrO2 (CZ) solid solution was carried out. A CZ was treated by H2O2 for the reduction of Ce4+ to Ce3+ and then HNO3 for the dissolution of Ce3+ compounds (H–CZ). H2-TPR, TEM-EDX and XPS analyses revealed the removal of CeO2 phase and the homogeneous distribution of Ce species. About 20% improvement in oxygen storage capacity (OSC) of H–CZ was confirmed at 773 K by the weight measurements under H2/N2 and air atmospheres, indicating that the HNO3/H2O2 treatment was effective to avoid the deterioration of the OSC by segregated CeO2 on the CZ binary oxides.  相似文献   

3.
《应用陶瓷进展》2013,112(6):352-357
Abstract

MgO–Al2O3–SiO2 (MAS) cordierite based glass ceramics were prepared by volume crystallisation. X-ray diffraction, Scanning electron microscopy and Energy diffraction scanning were used to investigate crystallisation behaviour and the influence of P2O5 on microstructure MAS based glass ceramics. The results showed that P5+ could promote the phase separation of MAS glass and that the glass was divided into two areas, such as Mg4Al2Ti9O25 and the containing P5+ area at <900°C. Mg4Al2Ti9O25 and Mg3(PO4)2 in the area were both advantageous to the precipitation of μ cordierite, which further transformed to α cordierite due to P5+ in the residual glassy phase. However, P5+ inhibited the presence of cordierite when the heat treatment temperature was >900°C.  相似文献   

4.
Hydroxymethylation of anisole has been carried out over SnO2–CeO2 catalysts in the temperature range 623–723 K. Methoxybenzaldehyde (anisaldehyde) and condensation products were formed along with minor quantities of methoxybenzyl alcohol, o‐cresol, phenol and 2,6‐xylenol. A maximum anisaldehyde selectivity of 64% was obtained at 623 K at an anisole conversion of 46% under optimized conditions. Catalytic activity of these systems in the formation of aldehyde is ascribed to the presence of weak acid sites and redox metal sites. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
TS-1 was prepared by microwave heating of a SiO2–TiO2 xerogel dry-impregnated with the template, TPAOH. A highly crystalline product was obtained within 30 min after microwave irradiation with yields over 90%. These are significant advantages over the TS-1 obtained by conventional oven heating using alkoxide precursors in liquid phase, which requires 1–2 day crystallization time with low product yields. Characterization of the TS-1 obtained was carried out using XRD, SEM, FT-IR, and UV-vis spectroscopy, and catalytic activity was examined for 1-hexene epoxidation using H2O2 as oxidant. These studies revealed that the material obtained by microwave heating of the mixed oxide gel shows essentially identical physicochemical properties to those prepared by conventional means.  相似文献   

6.
Nanopowders with cubic fluorite-type structure as well as uniform distribution in particle size were synthesized by hydrothermal method in the ternary oxide zirconia–yttria–ceria system with ceria content of 0–25 mol%. X-ray diffraction (XRD), thermogravimetric analysis/differential scanning calorimeter (TG/DSC), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (Raman), specific surface area (SBET) and high resolution transmission electron microscopy (HRTEM) were applied to characterize the structure, thermal decomposition, morphological characteristic and crystal growth of the produced powders. Qualitative analyses indicate that the as-synthesized nanoparticles are single-phase crystallites with an average particle size of 4–9 nm. The specific surface area, lattice parameter and microstrain are closely related to Ce4+ concentration. Moreover, activation energy of crystal growth is significantly dependent on the dopant (CeO2) concentration. It firstly increased and then decreased with increasing dopant concentration, and the maximum value was observed at the dopant concentration of 5 mol%.  相似文献   

7.
《Ceramics International》2017,43(3):3147-3155
Magnetic properties of Fe2O3/SiO2 samples were studied after being produced by sol-gel synthesis and formation of ε-Fe2O3 polymorph. Samples were thermally treated, using different annealing temperatures and annealing times. The size and morphological characteristics of the iron oxide nanoparticles were examined using a TEM microscope. We used the “ellipticity of shapes”, which is a measure of how much the shape of a nanoparticle differs from a perfect ellipse, in order to quantitatively describe morphological properties of nanoparticles. Coercivity measurements were used to identify and monitor the formation of the epsilon-iron oxide phase during the thermal treatments (annealing). Coercivity values were in the range from 1.2 to 15.4 kOe, which is in accordance with previous experience regarding the existence of ε-Fe2O3. We have determined the optimal formation conditions for the ε-Fe2O3 polymorph (t=1050 °C for 7 h, HC=15.4 kOe), as well as the narrow temperature interval (1050–1060 °C) in which the polymorph abruptly vanished (HC=2300 Oe), on the basis of results of the magnetic properties. The threshold temperature for the ε-Fe2O3 phase transformation was measured as 1060 °C. We found that different annealing temperatures and annealing times significantly affected magnetic properties of the examined samples.  相似文献   

8.
Refractories and Industrial Ceramics - The mechanism of self-propagating high-temperature synthesis (SHS) of AlB2–Al2O3 composite powders was studied using the combustion front quenching...  相似文献   

9.
The possibility of initiation of combustion of CH4–O2 mixtures with excitation of O2 molecules to the states a1g and b1+ g by laser radiation with wavelengths of 1.268 m and 762 nm is considered. It is shown that excitation of O2 molecules significantly decreases the induction period and ignition temperature because of accelerated formation of active atoms and radicals and intensification of the chain mechanism of the process. Even if the specific energy of laser radiation absorbed by the gas is low ( 0.1 eV per molecule), the ignition temperature of the CH4–O2 mixture with a ratio of 1:2 can be reduced from 1000 to 300 K.  相似文献   

10.
Three different spinel compositions with MgO:Al2O3 molar ratios 2:1, 1:1 and 1:2 were studied using TiO2 as an additive up to 2 wt.%. Solid state reaction sintering technique was employed for all the compositions in the temperature range of 1550–1650°C. Attrition milling was done for the reduction of particle size. Sintered products were characterised in terms of densification and shrinkage studies, phase analysis, strength evaluation both at ambient temperature and at elevated temperature, strength retention after different number of thermal cycles at 1000°C, quantitative elemental analysis and microstructural studies.  相似文献   

11.
The effect of the addition of CeO2 or La2O3 on the surface properties and catalytic behaviors of Al2O3-supported Pd catalysts was studied in the steam reforming of methane. The FTIR spectroscopy of adsorbed CO and the Pd dispersion suggest the partial coverage of Pd0 by ceria or lanthana species. This could lead to the formation of an adduct MPd x O (M = Ce or La) at the surface of the metal crystallites. The addition of ceria or lanthana resulted in an increase of the turnover rate and specific rate for steam reforming of methane. One possible explanation if that the Pd0*Pdδ+O–M interfacial species (M = Ce or La) are oxidized by H2O or CO2, promoting the O* transfer to the metal surface. This could facilitate the removal of C* species from the metal surface, resulting in the increase of specific reaction rate and increase of the accessibility of CH4 to metal active sites.  相似文献   

12.
13.
Catalytic performance of a series of Ga2O3–Al2O3 mixed oxides prepared by alcoholic-coprecipitation method for the dehydrogenation of propane in the presence of CO2 was investigated. It is shown that the combination of Ga and Al oxides greatly improved the performance of the Ga2O3-based materials for catalytic dehydrogenation of propane, with the highest performance attainable at a Ga2O3–Al2O3 catalyst with a 20 mol% aluminum content. While the same tendency was observed for the specific activity normalized by BET surface area, significantly enhanced stability was achieved for Ga2O3–Al2O3 with higher aluminum content. X-ray diffraction (XRD) revealed that a homogeneous spinel-type Ga2O3–Al2O3 solid solution is uniformly formed by substitution of Ga3+ for Al3+ in the Al2O3 lattice. The enhanced activity of Ga2O3–Al2O3 mixed oxides was accounted for by the abundance of surface weak acid sites due to the synergetic interaction between Ga2O3 and Al2O3 in the solid solution systems.  相似文献   

14.
《Ceramics International》2019,45(16):20354-20361
In this work, the influence of modifications of SHS-process on the microstructure and performance characteristics of composite ceramics MoSi2-HfB2-MoB with two-level structure was studied. Partial texturing of MoSi2 grains in samples obtained by force SHS pressing technology was revealed. The effect of preliminary mechanical activation on the macrokinetic parameters of combustion and on the microstructure of the synthesized ceramics was studied. A significant grinding of the synthesized ceramics grain and an increasing of physical-mechanical properties are achieved by increasing the velocity and lowering the combustion temperature of the activated mixtures. The sample obtained by hot pressing of SHS powder from MA reaction mixture showed the most optimal combination of hardness (19.5 GPa), porosity (0.4%) and oxidation resistance (1.82∙10-6 mg/(cm2∙s)).  相似文献   

15.
Zircon (mesh size ≤ 44μm ) and carbon black (mesh size ≤30μm ) were used as the starting materials, weighed with re(zircon) : re(carbon black) of 100 : 20 and mixed fully. The specimens with the diameter of 20ram and length of 5ram were prepared by pressing at 100 MPa, then dried at 120℃ for 12h, put into a furnace with 1. 5L ·min^-1 argon gas and fired at 1450℃, 1500℃, 1550℃, 1600℃ and 1650℃ for 4h, respectively. The chemical composition, phase composition and microstructure of the specimens were studied by chemical analysis, X-ray diffraction and scanning electronic microscope, and the carbothermal reduction reaction process was discussed by thermodynamic analysis. The results showed that the ZrO2-SiC composite could be synthesized by carbothermal reduction reaction using zircon and carbon black as the starting materials in argon atmosphere. The composite with different composition was obtained by controlling the firing temperature and partial pressure of CO gas. The proper temperature to synthesize ZrO2-SiC composite was 1600℃ in this experiment.  相似文献   

16.
The effect of drying of VOPO42H2O on the preparation of vanadium phosphate catalysts for the selective oxidation of n-butane to maleic anhydride is described and discussed. It is found that partially dehydrated samples of the dihydrate containing small amounts of I-VOPO4 are formed when the material is initially dried. The presence of this impurity leads to a final catalyst containing trace amounts of I-VOPO4 in combination with (VO)2P2O7 and this combination leads to a catalyst with a higher activity but with a lower selectivity to maleic anhydride. The drying stage is also found to influence the surface area and intrinsic activity of the activated catalyst.  相似文献   

17.
A series of boria catalysts supported on titania–zirconia mixed oxide (B2O3/TiO2–ZrO2) with different boria loadings (8–20 wt%) were prepared and characterized by X-ray diffraction, adsorption of nitrogen, 11B magic angle spinning (MAS) NMR measurements and temperature-programmed desorption (TPD) of ammonia. The catalytic performance of B2O3/TiO2–ZrO2 for vapor-phase Beckmann rearrangement of cyclohexanone oxime to -caprolactam was studied at 300°C. It was found that the lactam selectivity increased with increasing of boria loading, whereas a maximum oxime conversion was obtained at the boria loading of 12 wt%. The acid sites of medium strength on the surface of the catalyst play an important role in the selective formation of lactam.  相似文献   

18.
《Ceramics International》2017,43(11):7984-7991
Co-precipitated and 800 °C heat treated Ni-Cu-Zn nanoferrites with chemical formula NixCu0.1Zn0.9-xFe2O4 (x=0.5, 0.6, 0.7) were prepared because of their potential use as multilayer chip inductors in electromagnetic applications. Their structural, magnetic properties and phase formation were studied using X-ray diffractometer (XRD), field emission scanning electron microscope (FE–SEM), vibrating sample magnetometer (VSM), Mössbauer spectrometer, thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC). The XRD patterns confirm the cubic spinel structure of the ferrite phase belonging to Fd3m space group. Lattice parameters and cation distributions were obtained by Rietveld refinement of the XRD patterns. The lattice parameter decreases with increase in Ni2+ ion concentration. Rietveld analysis indicates that Cu2+ ions predominantly occupy the B-sites and Ni2+ ions partly going into B-sites but predominantly into A-sites. An excellent agreement is observed between the experimental lattice parameters and lattice parameters theoretically calculated using this cation redistribution. The inversion parameter (λ) observed for Fe3+ ions by Mössbauer spectroscopy is different from that of Rietveld analysis. Magnetization and Mössbauer spectroscopic measurements indicate that the ferrite nanoparticles are mostly superparamagnetic. The cation redistribution is supposed to alter the magnetocrystalline anisotropy which in turn affects the magnetic parameters of the present ferrite samples. The reduced magnetization is attributed to core-shell interactions and possible canting of A- and B-shell magnetizations. TGA-DSC studies indicate that ferrite formation in the 800 °C heat treated samples is completed but grain growth increases as the particles are subject to the increased temperature.  相似文献   

19.
20.
The effects of adding 1–8 wt% Y2O3 on phase formation and fracture toughness of Al2O3xZrO2–Y2O3(AZY) ceramics were studied. Phase formations of the samples were characterized by the X-ray diffraction (XRD) technique. It was found that the major phase was rhombohedral-Al2O3, while the minor phase consisted of the monoclinic-ZrO2, tetragonal-ZrO2 and monoclinic-Y2O3. It was found that Y2O3 contents did not clearly influence grain shape of AZY ceramics. The results obtained from the microhardness test could be used to evaluate the fracture toughness. It was found that the smaller grains had high fracture toughness. The maximum fracture toughness of 4.827 MPa m1/2 was obtained from 4 wt% Y2O3. Refinement of lattice parameters using Rietveld analysis revealed the quantitative phases of AZY ceramics. This shows that under adding Y2O3 conditions the proportion of tetragonal-ZrO2 phase plays an important role for the mechanical properties of AZY ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号