首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors have previously proposed plastic limit load solutions for thin-walled branch junctions under internal pressure and in-plane bending, based on finite element (FE) limit loads resulting from three-dimensional (3-D) FE limit analyses using elastic–perfectly plastic materials [Kim YJ, Lee KH, Park CY. Limit loads for thin-walled piping branch junctions under internal pressure and in-plane bending. Int J Press Vessels Piping 2006;83:645–53]. The solutions are valid for ratios of the branch-to-run pipe radius and thickness from 0.4 to 1.0, and for the mean radius-to-thickness ratio of the run pipe from 10.0 to 20.0. Moreover, the solutions considered the case of in-plane bending only on the branch pipe. This paper extends the previous solutions in two aspects. Firstly, plastic limit load solutions are given also for in-plane bending on the run pipe. Secondly, the validity of the proposed solutions is extended to ratios of the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 5.0 to 20.0. Comparisons with FE results show good agreement.  相似文献   

2.
The present work presents plastic limit load solutions for thin-walled branch junctions under internal pressure and in-plane bending, based on detailed three-dimensional (3-D) finite element (FE) limit analyses using elastic–perfectly plastic materials. To assure reliability of the FE limit loads, modelling issues are addressed first, such as the effect of kinematic boundary conditions and branch junction geometries on the FE limit loads. Then the FE limit loads for branch junctions under internal pressure and in-plane bending are compared with existing limit load solutions, and new limit load solutions, improving the accuracy, are proposed based on the FE results. The proposed solutions are valid for ratios of the branch-to-run pipe radius and thickness from 0.4 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 10.0 to 20.0.  相似文献   

3.
Approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the FE results.  相似文献   

4.
Approximate limit and plastic collapse load solutions for un-reinforced mitred bends under internal pressure and under bending are proposed in this paper, based on three-dimensional finite element analysis and approximate solutions for smooth bends. Solutions are given for single- and multi-mitred bends (mainly for single and double segmented bends) with the pipe mean radius-to-thickness ratio (r/t) ranging from r/t = 5 to r/t = 50, and the bend radius-to-mean radius ratio (R/r) from R/r = 2 to R/r = 4. Internal pressure, in-plane bending and out-of-plane bending loads are considered, but not their combination. It is found that the essential features of limit and plastic collapse loads for mitred bends are similar to those for smooth bends, and thus existing solutions for smooth elbows can be used to construct limit loads and plastic collapse for mitred bends.  相似文献   

5.
A new method of calculating the limit load of a structure via a sequence of incompressible elastic finite element calculations with variable Young's moduli converging to the rigid perfectly plastic problem is used to study the limit load of branch pipe tee connections. Several models of branch pipe tee connection are meshed with shell elements and submitted to internal pressure with end axial load effect or out-of-plane moment. Results are compared with lower and upper bound analytical solutions and experimental results reported in the literature. Computations with 20 noded cubic elements are also proposed to validate shell studies. The J integral is also calculated by a simplified method with the limit load, using an example of a defective branch pipe tee connection.  相似文献   

6.
通过有限元方法,对内压环形管在沿管壁法向带接管的结构进行应力分析,研究在特殊位置,弯管法线方向开孔时环管及支管中的应力分布,并与直管开孔补强的结果进行对比,总结弯管中非特殊位置的结构开孔时应力分布特点,为弯管开孔补强设计提供参考。  相似文献   

7.
The Linear Matching Method is used to create the shakedown limit and limit load interaction curves of 90° pipe bends for a range of bend factors. Two load cases are considered i) internal pressure and in-plane bending (which includes opening, closing and reversed bending) and ii) internal pressure and a cyclic through wall temperature difference giving rise to thermal stresses. The effects of the ratios of bend radius to pipe mean radius (R/r) and mean radius to wall thickness (r/t) on the limit load and shakedown behaviour are presented.  相似文献   

8.
This paper presents elastic, shakedown and plastic limit loads for 90° elbows under constant internal pressure and cyclic in-plane bending, via finite element (FE) analysis. Effects of the elbow geometry (the bend radius to mean radius ratio and the mean radius-to-thickness ratio) and of the large geometry change are systematically investigated. By normalizing the in-plane bending moment by the plastic limit load solution of Calladine, the shakedown diagram is found to be close to unity up to a certain value of normalized pressure (normalized with respect to the limit pressure) and then to decrease almost linearly with increasing normalized pressure. The value up to which shakedown limit loads remain constant depends on the elbow geometry and the large geometry change effect. Effects of the elbow geometry and the large geometry change on shakedown diagrams are discussed.  相似文献   

9.
Plastic collapse of pipe bends with attached straight pipes under combined internal pressure and in-plane closing moment is investigated by elastic–plastic finite element analysis. Three load histories are investigated, proportional loading, sequential pressure–moment loading and sequential moment–pressure loading. Three categories of ductile failure load are defined: limit load, plastic load (with associated criteria of collapse) and instability loads. The results show that theoretical limit analysis is not conservative for all the load combinations considered. The calculated plastic load is dependent on the plastic collapse criteria used. The plastic instability load gives an objective measure of failure and accounts for the effects of large deformations. The proportional and pressure–moment load cases exhibit significant geometric strengthening, whereas the moment–pressure load case exhibits significant geometric weakening.  相似文献   

10.
A yield hyper-surface for pipe sections subjected to combinations of normal forces, internal and external pressure, twisting moments, biaxial bending moments and biaxial shearing forces is developed. The formulation is based on the fully plastic capacity of the pipe as determined by the maximum distorsional energy density yield criterion. The solution is obtained by maximizing a lower bound analysis and yields a yield hyper-surface that is exact within the limitations of the formulation. The developments are expressed as universal non-dimensional relationships suitable for limit states design of elevated pipes, submerged pipes, offshore platforms and structural tubular steel members. Previously established interaction relations for bending moments, axial forces and internal pressure are recovered as a special case of the general solution. The merits of using the yield hyper-surface to characterize generalized plastic hinge behavior in elasto-plastic pipe stress analysis are presented.  相似文献   

11.
This paper firstly presents net-section limit moments for circumferential through-wall and part-through surface cracks at the interface between elbows and attached straight pipes under in-plane bending. Closed-form solutions are proposed based on fitting results from small strain FE limit analyses using elastic–perfectly plastic materials. Net-section limit moments for circumferential cracks at the interface between elbows and attached straight pipes are found to be close to those for cracks in the centre of elbows, implying that the location of the circumferential crack within an elbow has a minimal effect on the net-section limit moment. Accordingly it is also found that the assumption that the crack locates in a straight pipe could significantly overestimate the net-section limit load (and thus maximum load-carrying capacity) of the cracked component. Based on the proposed net-section limit moment, a method to estimate elastic–plastic J based on the reference stress approach is proposed for circumferential cracks at the interface between elbows and attached straight pipes under in-plane bending.  相似文献   

12.
This paper presents a comparison of the plastic collapse loads from experimental in-plane bending tests on three 90° single un-reinforced mitred pipe bends, with the results from various 3D solid finite element models. The bending load applied reduced the bend angle and in turn, the resulting cross-sectional ovalisation led to a recognised weakening mechanism. In addition, at maximum load there was a reversal in stiffness, characteristic of buckling. This reversal in stiffness was accompanied by significant ovalisation and plasticity at the mitre intersection. Both the weakening mechanism and the post-buckling behaviour are only observable by testing or by including large displacement effects in the plastic finite element solution. A small displacement limit solution with an elastic-perfectly plastic material model overestimated the collapse load by more than 40% and could not reproduce the buckling behaviour.  相似文献   

13.
The effect of the length of an attached straight pipe on the plastic limit load of a 90° pipe bend under combined pressure and bending is quantified, based on finite element (FE) limit analyses using elastic–perfectly plastic materials with the small geometry change option. Systematic FE limit analyses of pipe bends with various lengths of the attached pipe are performed. It is shown that the effect of the length of the attached straight pipe on plastic limit loads can be significant, and the limit loads tend to decrease with decrease of the length of the attached straight pipe. In the limiting case of no attachment, the limit loads are found to be close to existing analytical solutions.  相似文献   

14.
An analysis is carried out to investigate the dynamic characteristics of a tensioned circular saw. The analytical model is a rotating annular disc, undergoing plastic strain at a given temperature. By using the plate bending theory, the governing equations for the in-plane behavior during rotation and under thermal load and plastic strain and those for the resulting out-of-plane behavior are derived. Then, the solution of in-plane forces is obtained and the modal analysis is carried out. The in-plane forces and natural frequencies are calculated numerically to investigate the effect of tensioning conditions on them, and to find suitable tensioning conditions.  相似文献   

15.
This study concerns the load interaction behaviour of 90° smooth piping elbows with circular cross-section and long straight tangent pipes. The finite element method is used for stress analysis of elbows having a wide range of bend and pipe factors. The main aim of the study is to establish the first yield interaction behaviour when an elbow is subjected to a combination loading of in-plane bending, torsion and internal pressure. The study shows that load interaction is influenced by pipe factor, bend radius and load coupling effect, with thinner elbows being affected to a larger degree.  相似文献   

16.
Results are presented from an FE numerical study of the capacity of a dented pipe to withstand combined pressure and moment loading. The denting process was modelled with internal pressure applied at the design level. The pipe support was modelled by a saddle-type arrangement. The strength of the dented pipe was first assessed under pure bending, applied in such a way that the dent was either on the tension side or the compression side. The strength of the dented pipe was then assessed under internal pressure loading. Finally, the behaviour of the dented pipe under combined bending and pressure loading was assessed and interaction diagrams prepared.  相似文献   

17.
为了研究月牙肋钢岔管在内水压力下的应力分布特点,确定超载情况下塑性区的出现部位及塑性的发展程度,以某水电站月牙肋钢岔管实际工程项目为例,建立带弹性地基的岔管有限元模型,开展水压试验工况下正常内水压及超载内水压的静力弹塑性分析。对不同管壁厚度和内水压力下塑性区域、第一主塑性应变和Mises应力进行了分析,表明:在内水压力作用下,塑性区域集中出现在管壳与月牙肋板相贯线附近主岔管最高点内壁处,月牙肋板与岔管接缝处附近出现小部分塑性区域。为月牙肋钢岔管的加肋补强及钢筋混凝土外包提供了设计依据。  相似文献   

18.
Experimental measurements have been made of stresses in out-of-round pipe bends under internal pressure and in-plane bending. This paper describes the results of tests on one new and one ex-service pipe bend under the two loadings and compares these results with various theoretical predictions. For the pressure case the original formula due to Haigh2 with modifications to take into account thickness variations and pipe bend radius, is reasonably accurate and for bending loads the recent formulation by Spence and Boyle12 is a reasonable approximation. The code method of combining peak stresses by addition is confirmed in this case. The results of the tests have assisted designers in reviewing allowable limits on the ovality of manufactured pipes and in placing realistic limits on the cold springing of pipes to overcome erection tolerances.  相似文献   

19.
The problem of limit analysis for a cylinder–cylinder intersection forming a single mitred pipe bend subject to in-plane bending has been investigated. Lower bound analysis with new equations of force and moment equilibrium together with a higher number of parameters resulted in more stability as compared to a previous analysis of the same problem [PhD Thesis, The University of Manchester, 1991]. Concurrently, abaqus finite element plastic collapse moments were obtained as upper bounds to the problem. Two sets of results were compared, showing good agreement with each other. It could be finally concluded that the true limit moments are bounded in between.  相似文献   

20.
The first part of this paper provides a review of recent investigations on steel pipes subjected to combined loads. Attention is given to studies involving both numerical and experimental components aimed at quantifying the modified moment resistance of pipes subjected to internal pressure and axial force. The comparison of experimental and finite element results indicate that the nonlinear shell finite element analysis is a reliable tool for predicting moment capacities of pipes. The second part of the paper reports two additional full-scale tests recently conducted at the University of Ottawa aimed at expanding the existing experimental database to pipes subjected to more complex load combinations involving twisting moment and shear (in addition to axial force, internal pressure, and bending). The finite element analysis for both tests is shown to provide excellent predictions of pipe moment capacity. The third part of the paper is a systematic parametric study based on the FEA model verified in previous and present investigations, aimed to assess the ability of pipe sections to attain their modified elastic and/or plastic moment resistance as predicted by analytically derived interaction equations. The parameters investigated are the applied torsion, internal pressure, axial force, and the diameter-to-thickness ratio of the pipe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号