首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal expansion of NaNH4SeO4SeO42H2O crystal was measured by means of dilatometric method along three crystallographic axes in the temperature range of 300-140 K. Anomalies of relative expansion and thermal expansion coefficients related to ferroelectric phase transition were observed and confirmed its continuous character.  相似文献   

2.
Ferroelectrics with perovskite‐like layered (PL) structure are well‐known for their high Tc and the application prospect of high‐temperature‐piezoelectric sensing. In this study, the PL‐structure Eu2Ti2O7 was prepared by 1‐step high‐pressure sintering, which show the pyrochlore structure of Eu2Ti2O7 would change into PL structure at 11 GPa, 1300°C. The PL‐structure Eu2Ti2O7 is metastable, which will change back to pyrochlore structure at about 900°C in the air. The PL‐structure Eu2Ti2O7 was confirmed as a high‐temperature ferroelectric material for the first time. The ferroelectric domain switching was directly observed using piezoelectric force microscope. The piezoelectric constant of the PL Eu2Ti2O7 ceramic was measured as 0.7‐0.9 pC/N and its thermal depoling temperature (Td) was determined as 800°C, which is associated with the PL‐pyrochlore transition.  相似文献   

3.
Solid solutions of 12CaO·7Al2O3 (C12A7) and 12SrO·7Al2O3 (S12A7) crystals were synthesized under high pressure. X‐ray diffraction patterns revealed that the lattice constants of the synthesized samples depend linearly on the compositional ratio of C12A7 and S12A7. Electron‐probe X‐ray microanalyses show that the chemical compositions of the crystals are represented by xC12A7·(1?x)S12A7 (0<x<1). These results indicate that the variation in the lattice constants is originated from a difference in the ionic radii of Ca2+ and Sr2+ ions. From impedance measurements, it was found that S12A7 has the highest conductivity (~1 × 10?3 Scm?1 at 550°C) among the solid solutions in the C12A7–S12A7 system.  相似文献   

4.
In situ high‐pressure NMR spectroscopy of the hydrogenation of benzene to give cyclohexane, catalysed by the cluster cation [(η6‐C6H6) (η6‐C6Me6)2Ru33‐O)(μ2‐OH)(μ2‐H)2]+ 2 , supports a mechanism involving a supramolecular host‐guest complex of the substrate molecule in the hydrophobic pocket of the intact cluster molecule.  相似文献   

5.
The compressional behavior and the P‐induced deformation mechanisms at the atomic scale of (Cs,K)Al4Be5B11O28 (londonite, a ~7.31 Å and space group P3m) were investigated by in situ single‐crystal synchrotron X‐ray diffraction with a diamond anvil cell up to 26 GPa. No phase transition was observed within the P‐range investigated: this material exhibits isotropic compression (i.e., with cubic symmetry) in response to the applied pressure. Fitting the P–V data with a Birch‐Murnaghan isothermal equation of state, we obtained: V0=390.8(3) Å3, KP0=212(7) GPa (β0=1/KP0=0.0047(1) GPa?1) and K′=4.6(6). A series of structural refinements, based on the high‐pressure intensity data, were performed. The stiffness of londonite (similar to that of carbides) is governed by its close‐packing structure, and in particular by the very low compressibility of B‐ and Be‐tetrahedra and the modest compressibility of the Al‐octahedra. The Cs‐polyhedra are the most compressible units of the structure. The effects of pressure can be accommodated by intrapolyhedral compression or deformation, leading to a modest bulk compression. The high amount of boron in londonite (B2O3 ~50 wt%) makes its synthetic counterpart a potential neutron absorber. In addition, the high content of Cs makes londonite‐type materials as potential hosts for nuclear waste.  相似文献   

6.
The phase transition and dielectric properties of Pb0.988(Hf0.945SnxTi0.03-xNb0.025)O3 ceramics (0 ≤ x ≤ 0.03, correspondingly abbreviated as H1, H2, H3, and H4) at the morphotropic phase boundary were systematically investigated. X-ray diffraction results and P-E hysteresis loops show that the dominate orthorhombic antiferroelectric phase and a small amount of the tetragonal FE phase coexist in Pb0.988(Hf0.945SnxTi0.03-xNb0.025)O3 ceramics. As the Sn content increases, the antiferroelectricity is significantly enhanced, accompanied with an increased Curie temperature and sharply reduced peak dielectric constant. H1 and H2 experience an irreversible field-induced AFE-FE phase transition at the ambient temperature, and the transition from a metastable FE phase to the original AFE phase is observed in H2 when heated to 60°C. H3 and H4 experience an invertible AFE-FE phase transition, along with an enhanced forward phase switching field EF. Moreover a decreased backward phase switching field EA for H4 is detected as the electric field increases due to the AFE/FE coexistence. These results reveal the unique phase transition characteristics of AFE materials near the phase boundary, which is helpful for better understanding of AFE/FE materials.  相似文献   

7.
Friedels salt, the chlorinated compound 3CaO · Al2O3 · CaCl2 · 10H2O (AFm phase), presents a structural phase transition at about 30°C from a monoclinic to a rhombohedral phase. It has been studied by X-ray powder diffraction and optical microscopy in transmitted light with crossed polarisers on single crystals prepared by hydrothermal synthesis. The high temperature phase was determined at 37°C from X-ray single crystal diffraction data. The compound crystallises in the space group R c with lattice parameters of a = 5.7358(6)Å and c = 46.849(9)Å (Z = 3 and Dx = 2.111 g/cm3). The refinement of 498 independent reflections with I > 2σ(I) led to a residual factor of 7.1%. The Friedels salt can be described as a layered structure with positively charged main layers of composition [Ca2Al(OH)6]+ and negatively charged layers of composition [Cl,2H2O]. The chloride anions are surrounded by 10 hydrogen atoms, of which six belong to hydroxyl groups and four to water molecules. The structural phase transition may be related to the size of the chloride anions, which are not adapted to the octahedral cavity formed by bonded water molecules.  相似文献   

8.
《Ceramics International》2016,42(9):10833-10837
Nb2O5 doped Ba(Zr0.2Ti0.8)O3 (short as BZT20) ceramics were prepared by a mixed-oxide method using a high-energy planetary ball mill and the influence of Nb2O5 addition on microstructure, dielectric properties and diffuse phase transition behavior of BZT20 ceramics were investigated. It was demonstrated that Nb5+entered the B-site of BZT20 ceramic and substituted for Ti4+, which caused the expansion and distortion of crystal lattice. BZT20 ceramics doped with 0.2 mol% Nb2O5 showed excellent dielectric property and lower diffusivity with εm=37,823 and γ=1.49. We supposed that the increase of dielectric constant and decrease of diffuseness parameter with increasing Nb2O5 content were caused by lattice disorder and unbalancing of cations induced by the substitution of Ti4+ by Nb5+ in the B sites of BZT20 ceramics. The Curie temperature decreased with the increase of Nb2O5 content, which can be attributed to enlarged distortion energy of the Nb doped BZT20 structure. Besides, grain size effect on the dielectric property and diffuse phase transition behavior of Nb2O5 doped BZT20 ceramics was also investigated.  相似文献   

9.
In this study we analyzed the phase and state transitions of shape‐memory polymers (SMPs)/solvent mixtures using the Flory–Huggins (FH) theory by extension of Vrentas and the Couchman–Karasz theory for glass transition, as well as Clausius–Clapeyron relation for melting transition. Using scaling relations of model parameters, we have obtained a theoretical prediction of state diagrams of the phase transition temperature and solvent‐induced recovery in SMPs. The inductive decrease in transition temperature is identified as the driving force for the solvent‐induced shape‐memory effect in SMPs Consequently, the thermodynamics of the polymer solution and the relaxation theory were employed to characterize the dependencies of shape recovery time on the FH parameter and the ratio of the molar volume of solute to solvent. With the estimated model parameters, we constructed the state diagram for SMP, which provides a powerful tool for design and analysis of phase transition temperatures and solvent‐induced recovery. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
A novel two-dimensional molybdenum oxide polymer, [Mo4O13]n · 2nH3O, has been prepared under specific hydrothermal conditions and characterized by IR spectroscopy and TG analysis. Single-crystal X-ray diffraction analysis reveals that compound 1 exhibits a (3, 4, 5, 6)-connected 2D layer structure with (32·4)(32·53·8)(3·42·54·6·82)(34·43·54·64) topology, which is constructed by two parallel molybdenum oxide dimeric chains (Mo2O10)n bound together by the dimer of Mo2O9 subunits via the sharing of corners. Additionally, the electrochemistry activity of compound 1 is also reported.  相似文献   

11.
The results of dielectric, pyroelectric, spontaneous polarization and dilatometric investigations in the temparature interval 110 K-295 K are presented for DMAGaS crystal. At both phase transition temperature, 136 K and 116 K, discontinuous changes of dielectric permittivity, spontaneous polarization and length of bars are observed. Temperature dependences of alongation along the ferroelectric direction and of spontaneous polarization are quite similar.  相似文献   

12.
Good thermal stability in lead-free BaTiO3 ceramics is important for their applications above room temperature. In this study, thermal stable piezoelectricity in lead-free (Ba,Ca)(Ti,Zr)O3 ceramics was enhanced by tailoring their phase transition behaviors. Comparison between (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.65Ca0.35)TiO3 and (1-y)Ba(Ti0.8Zr0.2)O3-y(Ba0.95Ca0.05)TiO3 revealed that latter system at y?=?0.80 had much better thermal stable piezoelectric coefficient than the former at x?=?0.45. Both systems crystalized in tetragonal to orthorhombic phase boundary at room temperature. The phase transition temperature and degree of diffusion were adjusted by Ca and Zr ions contents and demonstrated great influence on temperature dependent dielectric permittivity, hysteresis loops, and in-situ domain structures. The improved thermal stability of (1-y)Ba(Ti0.8Zr0.2)O3-y(Ba0.95Ca0.05)TiO3 prepared at y?=?0.80 was linked to its higher paraelectric to ferroelectric phase transition temperature (Tm?=?115.7?°C) and less degree of diffusion (degree of diffusion constant γ?=?1.35). By comparison, (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.65Ca0.35)TiO3 prepared at x?=?0.45 revealed Tm?=?81.3?°C and γ?=?1.65. Overall, these findings look promising for future stimulation of phase transition behaviors and design of piezoelectric materials with good thermal stabilities.  相似文献   

13.
Ferrous sulfate heptahydrate FeSO4·7H2O is a major waste produced in titanium dioxide industry by the sulfate process and has caused heavy environmental problem. A new green process for the treatment of FeSO4·7H2O was proposed to make use of iron source and recycle sulfate source as H2SO4. It was found that by adding concentrated HCl to the FeSO4 solution, FeCl2·4H2O was crystallized out, which was subsequently calcined to produce Fe2O3 and HCl. Concentrated H2SO4 solution (about 65 wt %) was obtained by evaporating the FeCl2·4H2O‐saturated filtrate. To facilitate the process development and design, the solubilities of FeCl2·4H2O in HCl, H2SO4, and HCl + H2SO4 solutions were measured and the experimental data were regressed with both the mixed‐solvent electrolyte model and the electrolyte NRTL model. On the basis of the prediction of the optimum conditions for the crystallization of FeCl2·4H2O, material balance of the new process was calculated. FeCl2·4H2O and Fe2O3 were obtained from a laboratory‐scale test with about 70% recovery of ferrous source for a single cycle, indicating the feasibility of the process. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4549–4563, 2017  相似文献   

14.
Thermosensitive poly(N‐isopropylacrylamide‐co‐acrylamide) microgel particles were prepared through precipitation polymerization. The diameters of the microgel particles were in the range of 220–270 nm and showed a monodispersion. The lower critical solution temperatures (LCST) of the microgel dispersions were measured by dynamic light scattering and turbidimetric analysis. The results indicated that the LCST increased with an increase of acrylamide (AAm) content in the copolymer composition. The kinetics of the thermosensitive phase transitions of the microgel particles were investigated by time‐course UV–vis spectroscopy. The results indicated that the higher the content of AAm in copolymer composition, the more time is required for equilibrium deswelling and the less time required for equilibrium swelling. In addition, the time required for equilibrium deswelling decreased with an increase of the content of the microgel particles in dispersions. By contrast, the time required for equilibrium swelling increased slightly. Thus, a suitable LCST and time required for equilibrium of phase transition can be achieved by adjusting the molar ratio of the comonomers in the microgels and the content of the microgel particles in dispersions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
In this paper, the influence of phase evolution on polarization change and electrocaloric response in lead‐free (Ba0.9Ca0.1)(Ti1?xZrx)O3 ceramics (BCTZ) was systematically investigated. With increasing Zr/Ti ratio, the phase structure and phase transition behavior were greatly changed, resulting in various temperature and electric field dependence of electrocaloric responses. For x=0.05, a peak electrocaloric temperature change 1.64 K (at 130°C) and corresponding entropy change 1.78 J·kg?1·K?1 were obtained for 0‐7 kV·mm?1 electric field. Negative electrocaloric temperature change in ?0.1 K was obtained below Curie temperature (Tc), which may be induced by the orthorhombic‐tetragonal ferroelectric phase transition. With the increase in x, the peak value of the electrocaloric response decreased but much better temperature stability was observed. Simultaneously the negative electrocaloric response gradually disappeared with the disappearance of the low temperature ferroelectric‐ferroelectric phase transition. For x=0.2, electrocaloric response showed good temperature stability ranging from room temperature to 130°C, attributing to the relaxor ferroelectric feature.  相似文献   

16.
17.
18.
Novel processes involving ionic liquids with refrigerant gases have recently been developed. Here, the complete global phase behavior has been measured for the refrigerant gas, 1,1,1,2‐tetrafluoroethane (R‐134a) and 1‐n‐alkyl‐3‐methyl‐imidazolium ionic liquids with the anions hexafluorophosphate [PF6], tetrafluoroborate [BF4] and bis(trifluoromethylsulfonyl)imide [Tf2N] from ~0°C to 105°C and to 33 MPa. All of the systems studied were Type V from the classification scheme of Scott‐van Konynenburg with regions of vapor‐liquid equilibrium, miscible/critical regions, vapor‐liquid‐liquid equilibrium, and upper and lower critical endpoints (UCEP and LCEP). The effect of the alkyl chain length has been investigated, for ethyl‐([EMIm]), n‐butyl‐([BMIm]), and n‐hexyl‐([HMIm]). With increasing chain length, the temperature of the lower critical end points increases and pressure at the mixture critical points decrease. With a common cation, the temperature of the LCEP increased and the mixture critical point pressures decreased in the order of [BF4], [PF6], and [Tf2N]. © 2008 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

19.
《Ceramics International》2023,49(15):25185-25198
Thortveitite-type (T-type) scandium and indium pyrogermanates were obtained through a solid-state reaction route. The crystal structures, morphologies, and chemical compositions of these compounds were investigated by X-ray diffraction and transmission electron microscopy techniques. The optical-vibration properties were evaluated by Raman scattering and infrared spectroscopy. Reflectivity far-infrared data were obtained for sintered Sc2Ge2O7 samples, which exhibited good surfaces after polishing, allowing the determination of the infrared optical functions, the complete polar phonon characteristics, the intrinsic dielectric constant and the unloaded quality factor. Because of the poor surface reflectivity of In2Ge2O7 samples, only mid-infrared absorbance data could be collected by using loose powders in an attenuated total reflectance accessory. By using polarized Raman spectroscopy on both ceramic materials, at room temperature and ambient pressure, all the 15 active Raman modes predicted by group theory for the monoclinic C2/m T-type structure were identified and assigned. Further, the phase stabilities of In2Ge2O7 and Sc2Ge2O7 were studied by high-pressure Raman spectroscopy. In the limit of pressures studied here (up to 10 GPa), a reversible structural phase transition (SPT) for In2Ge2O7 and Sc2Ge2O7 was induced by pressures of 4.2 GPa and 2.4 GPa, respectively. These would correspond to the reported C2/m (#12) ↔ P21/c (#14) SPT. Representative Raman spectra of the high-pressure phase for both materials were fitted and 24 first-order Raman modes were depicted for each material, a number greater than compatible with a proposed distorted and oxygen-deficient fluorite-like structure, but explained by an analysis of the gtroup-subgroup constraints of this SPT.  相似文献   

20.
To explore the effect of negative thermal expansion on the reduction of the coefficient of thermal expansion of polymer with respect to that of chain stiffening, the preparation of polycarbonate composites with ZrW2O8 and ZrW2O7(OH)2·2H2O are attempted. In the process, the dispersion of the filler particles in the polymer needs to be optimized, and the transfer of properties at the interface between the two phases. Therefore, surface modification by in situ polymerization is performed on these two particles. Several parameters of the reaction are optimized to achieve higher surface coverage of oligomer, including reaction time and the amount of monomers and particles. On the basis of the optimized conditions, two modification steps are then used to maximize both recovered amount of modified particles and surface coverage. The composites prepared with modified particles show enhanced dispersion of the particles and interaction at the interfaces. POLYM. COMPOS., 37:1359–1368, 2016. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号