首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, graphite oxides (GOs) with different oxidation degrees and graphene nanosheets were prepared by a modified Hummers method and thermal exfoliation of the prepared GO, respectively. Polystyrene (PS)/GO and PS/graphene nanocomposites were prepared via melt blending. X-ray diffraction results showed that GOs and graphene were exfoliated in the PS composites. It could be observed from the scanning electron microscope images that GOs and graphene were well dispersed throughout the matrix without obvious aggregates. Dynamic mechanical thermal analysis suggested that the storage modulus for the PS/GO1 and PS/graphene nanocomposites was efficiently improved due to the low oxygen content of GO1 and the elimination of the oxygen groups from GO. The flammability of nanocomposites was evaluated by thermal gravimetric analysis and cone calorimetry. The results suggested that both the thermal stability and the reduction in peak heat release rate (PHRR) decreased with the increasing of the oxygen groups in GOs or graphene. The optimal flammability was obtained with the graphene (5 wt%), in which case the reduction in the PHRR is almost 50 % as compared to PS.  相似文献   

2.
Dispersibility of graphene sheets in polymer matrices and interfacial interaction are challenging for producing graphene-based high performance polymer nanocomposites. In this study, three kinds nanofillers; pristine graphene nanoplatelets (GNPs), graphene oxide (GO), and functionalized graphene sheet (FGS) were used to prepare polyurethane (PU) composite by in-situ polymerization. To evaluate the efficacy of functional groups on the graphene sheets, PU reinforced with GNPs, GO, and FGS were compared through tensile testing and dynamic mechanical thermal analysis. The Young's moduli of 2 wt% GO and FGS based PU nanocomposites were found significantly higher than that of same amount of GNPs loading as an evidence of the effect of functional groups on graphene sheets for the mechanical reinforcement. The strong interaction of FGS with PU was responsible to exhibit notably high modulus (25.8 MPa) of 2 wt% FGS/PU composite than the same amount of GNPs and GO loading even at elevated temperature (100 °C).  相似文献   

3.
Functionalized graphene oxide (FGO) was produced by reacting graphene oxide nanosheets with vinyl trimethoxy silane (VTMS). The results confirmed the attachment of VTMS molecules to the surface of GO sheets by Si–O–C bonding. The introduction of VTMS molecules led to an excellent dispersibility in tetrahydrofuran and to the complete exfoliation of FGO with a thickness of about 1.19 nm. Meanwhile, FGO/silicone polymer composites were prepared by solution blending method. The incorporation of 0.5 wt% of FGO in silicone polymer improved remarkably the thermal stability, tensile strength, and thermal conductivity of the silicone polymer composite, due to the homogeneous dispersion of FGO in the composites as well as to the strong interfacial adhesion with silicone polymer matrix. Tensile strength and thermal conductivity of the FGO/silicone polymer composite were increased by 95.6 and 78.3 %, respectively, with the addition of 0.5 wt% FGO. The 5 % weight loss temperature of the composite at 0.5 wt% FGO loading was detected 26.1 °C higher than that of silicone polymer.  相似文献   

4.
For developing high performance of graphene-based nanocomposites, dispersibility of graphene sheets in matrices and interfacial interaction are challenging due to the strong tendency of agglomeration and surface inertia of graphene. Here we report an efficient way to functionalize graphene nanosheets with aniline groups on their surfaces, to attain the functionalized graphene nanosheets (FGS) by diazonium treatment following reduction of graphene oxide with hydrazine hydrate. Two kinds of nanocomposites based on diallyl bisphenol A modified bismaleimide (BMI-BA) resin which was filled with functionalized graphene and reduced graphene oxide nanosheets were prepared, and the FGS were linked with BMI resin by chemical bonds. The FGS/BMI-BA composite at a loading of 0.3 wt% revealed a 39% increase in impact strength and a slightly improvement in flexural strength, and the resulting composite remains stable at high temperature. This work provides more possibilities for incorporation of graphene into polymer matrices and an efficient method to toughening the BMI resin.  相似文献   

5.
Graphene oxide/polyurethane/epoxy (GO/PU/EP) membranes were directly fabricated by functionalization of graphene oxide with epoxy-grafted polyurethane (GO-UE), and the interface correlation and crack propagation mechanisms in GO/PU/EP membranes interlaminar-toughened carbon fiber-reinforced polymer composites were investigated. The functionalized GO-UE with corrugation and scrolling nature of graphene sheets was evenly dispersed in GO/PU/EP membranes below 0.50 wt% loading. Mode I fracture toughness, flexural properties and interlaminar shear strength of GO/PU/EP membranes-toughened composites were enhanced in comparison with untoughened composites and PU/EP membranes-toughened composites, which was ascribed to the multifold interface bonding between the GO-UE layers, epoxy matrix and carbon fiber. Schematic models of multilevel crack propagations were proposed based on different crack extension directions to GO-UE and the morphology evolutions of GO-UE in the interlaminar region and at the carbon fiber interface in toughened composites, which highlighted the toughening mechanisms of crack pinning, crack deflection and separation between GO-UE layers.  相似文献   

6.
Functionalized graphene (FG) was successfully synthesized by treating graphene oxide with (3-aminopropyl) triethoxysilane (KH-550) and then reduced by hydrazine hydrate. Subsequently, significant reinforcement of polyurethane/epoxy resin (PU/EP) composites in situ synthesized on the FG is prepared. Morphologic study shows that, due to the formation of chemical bonding, the FG was dispersed well in the PU/EP matrix and the mechanical performance is improved. Meanwhile, the thermal degradation temperature was enhanced almost 50 °C higher than that of PU/EP. The conductivity of PU/FG/EP nanocomposites was 82.713 × 10−6 S/m at 2.0 wt% loadings. The resulting composites exhibited 96% shape fixity, 94% shape recovery, enhanced shape recovery force to realize thermo-electric dual-responsive property. Comparing with the results in literature, the composites used in this study have shown a progress between electrical conductivity and shape memory property.  相似文献   

7.
Poly(lactic acid) (PLA)/graphene nanocomposites were prepared by direct solution blending of PLA with graphene using chloroform as a mutual solvent. Graphene was prepared by a solution-phase processing followed by thermal reduction, which can be dispersed stably in chloroform for more than one month. Transmission electron microscopy (TEM) was used to examine the quality of the dispersion of graphene in the PLA matrix. The thermal properties and crystallization behavior of the nanocomposites were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and polar optical microscopy (POM). The results showed that the thermal stability of PLA was significantly improved with a very low loading of graphene and the addition of graphene had a great effect on spherulite morphology of PLA.  相似文献   

8.
Graphene and its nanocomposites were prepared via solution mixing process. Graphene based polymer nanocomposites were prepared by two step process. Firstly, graphene/poly(3-methyl thiophene)(PMT)/BaTiO3 nanocomposite was prepared by in situ chemical oxidation polymerization technique. In the second step these nanocomposites were dispersed in thermoplastic polyurethane (TPU) matrix by solution blending process. All the four nanocomposites in TPU [30 % modified graphene (P1), 30 % Poly(3-methyl thiophene) (P2), 30 % graphene/PMT/BaTiO3 (P3) and 15 % graphene/PMT/BaTiO3 + 15 % Fe3O4 (P4)] were analyzed by different analytical techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). Microwave absorbing property was measured by Agilent vector network analyzer (ENA E5071C) in the X-band region (8–12 GHz). Microwave absorption result was interpreted with the help of complex permittivity and permeability of the prepared materials. Matching of both dielectric loss and magnetic loss is essential for an effective radar absorbing material (RAM). P1, P2, P3 and P4 showed the maximum return loss of ?14.37, ?9.3, ?30.02 and ?47.59 dB respectively. Thermal stability of the RAMs was determined by the help of thermogravimetric analysis (TGA) instrument. Among the all, P4 showed better thermal property. All results support their use as RAM in different field.  相似文献   

9.
Atomic oxygen (AO) is a dominant component of the low earth orbit and can erode most spacecraft material. We demonstrated the application of graphene to enhance AO erosion resistance of spacecraft polymers. Graphene-reinforced epoxy resin nanocomposites were prepared by solidification of epoxy resin in solution with dispersed graphene flakes and their AO erosion resistance was investigated in a plasma-type ground-based AO effects simulation facility. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. Results based on erosion kinetics revealed that a 46 % decrease in mass loss and a 47 % decrease in erosion yield were achieved by addition of only 0.5 wt% of graphene. Further analysis of the surface morphology and composition showed that the graphene nanoflakes could serve as barriers to protect underneath from AO erosion. Thus, this approach provides a novel route for improving durability and reliability of spacecraft material, especially polymers.  相似文献   

10.
Polyester–polyurethane nanocomposites based on unmodified and modified montmorillonite clays were compared in terms of their morphology, mechanical, thermal, and adhesive properties. Excellent dispersion of the modified nanoclay in polymer with 3 wt% loading was confirmed from X-ray diffraction, and low-, and high-magnification transmission electron micrographs. The properties of the clay-reinforced polyurethane nanocomposites were a function of nature and the content of clay in the matrix. The nanocomposite containing 3 wt% modified clay exhibits excellent improvement in tensile strength (by ~100%), thermal stability (20 °C higher), storage modulus at 25 °C (by ~135%), and adhesive properties (by ~300%) over the pristine polyurethane.  相似文献   

11.
氧化石墨烯(GO)是石墨烯重要的衍生物之一,通过氧化和超声波分散制备了GO纳米片/环氧树脂复合材料。采用XRD、拉曼光谱、FTIR和TEM表征了GO纳米片的结构与形貌,研究了GO纳米片用量对GO纳米片/环氧树脂复合材料热稳定性、力学性能及介电性能的影响。结果表明:GO纳米片的加入提高了GO纳米片/环氧树脂复合材料失热稳定性;随着GO纳米片填充量的增加,GO纳米片/环氧树脂复合材料的冲击强度和抗弯性能先提高后降低,其介电常数和介电损耗则先减小后增加。GO纳米片填充量为0.3wt%的GO纳米片/环氧树脂复合材料的失重5%时的热分解温度由纯环氧树脂的400.2℃提高到424.5℃,而冲击强度和弯曲强度分别在GO纳米片填充量为0.2wt%和0.3wt%时达到最大,冲击强度由纯环氧树脂的10.5kJ/m2提高到19.7kJ/m2,弯曲强度由80.5 MPa提高到104.0 MPa。  相似文献   

12.
To improve the dispersion stability of rod-like attapulgite (ATT) in polymers, a small amount of graphene oxide (GO) nanosheets were employed as a supporter to fix ATT before introducing into polymer. The ATT nanorods were found attached tightly and dispersed uniformly on the GO nanosheets from TEM images of GO-ATT hybrids. The dispersion stability of ATT in water was also improved after being attached on GO nanosheets due to the abundant hydrophilic groups of GO, which was paramount for introducing them into polymers through water blending method. Poly(vinyl alcohol) (PVA) was then chosen to be reinforced by these GO-supported ATT via water blending method. Compared to the heavy aggregation of neat ATT in PVA, a homogeneous distribution of ATT nanorods in the matrix was achieved by introducing them in the form of GO-ATT, indicating a favorable assisted dispersion effect of GO nanosheets for ATT. Furthermore, PVA/GO-ATT nanocomposites containing only 2 wt% GO-ATT exhibited a significantly increase of 41.4 and 83.6 % in tensile strength and storage modulus, respectively.  相似文献   

13.
Graphene-reinforced cyclic butylene terephthalate (CBT) matrix nanocomposites were prepared and characterized by mechanical and thermal methods. These nanocomposites containing different amounts of graphene (up to 5 wt%) were prepared by melt mixing with CBT that was polymerized in situ during a subsequent hot pressing. The nanocomposites and the neat polymerized CBT (pCBT) as reference material were subjected to differential scanning calorimetry, dynamical mechanical analysis, thermogravimetrical analysis, and heat conductivity measurements. The dispersion of the grapheme nanoplatelets was characterized by transmission electron microscopy. It was established that the partly exfoliated graphene worked as nucleating agent for crystallization, acted as very efficient reinforcing agent (the storage modulus at room temperature was increased by 39 and 89 % by incorporating 1- and 5-wt% graphene, respectively). Graphene incorporation markedly enhanced the heat conductivity but did not influence the TGA behavior, except the ash content, due to the not proper exfoliation except the ash content.  相似文献   

14.
The interface between the matrix phase and dispersed phase of a composite plays a critical role in influencing its properties. However, the intricate mechanisms of interface are not fully understood, and polymer nanocomposites are no exception. This study compares the fabrication, morphology, and mechanical and thermal properties of epoxy nanocomposites tuned by clay layers (denoted as m-clay) and graphene platelets (denoted as m-GP). It was found that a chemical modification, layer expansion and dispersion of filler within the epoxy matrix resulted in an improved interface between the filler material and epoxy matrix. This was confirmed by Fourier transform infrared spectroscopy and transmission electron microscope. The enhanced interface led to improved mechanical properties (i.e. stiffness modulus, fracture toughness) and higher glass transition temperatures (T g) compared with neat epoxy. At 4 wt% m-GP, the critical strain energy release rate G 1c of neat epoxy improved by 240 % from 179.1 to 608.6 J/m2 and T g increased from 93.7 to 106.4 °C. In contrast to m-clay, which at 4 wt%, only improved the G 1c by 45 % and T g by 7.1 %. The higher level of improvement offered by m-GP is attributed to the strong interaction of graphene sheets with epoxy because the covalent bonds between the carbon atoms of graphene sheets are much stronger than silicon-based clay.  相似文献   

15.
《Composites Part A》2007,38(1):132-137
A clay with reactive activity prepared by treatment of natural montmorillonite with Methylene-bis-ortho-chloroaniline (MOCA) was incorporated into polyurethane matrix and a series of PU/clay nanocomposites were obtained by in situ polymerization. The microstructure of the nanocomposites with different content of the clay was examined by atomic force microscopy (AFM). The thermal and mechanical properties of the nanocomposites with different organic clay content were characterized by dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). It was found that the moduli and thermal stability of the nanocomposites were improved with augment of clay, especially, for the PU/9 wt% MO-MMT nanocomposite, compared to pure PU, the storage modulus and the loss modulus were increased by about 300% and 667% at −45 °C, respectively.  相似文献   

16.
In this work, cobalt oxide nanoparticles decorated on graphene nanosheets was firstly synthesized by a facile hydrothermal method. The structure and morphology of the synthesized hybrids were characterized by X-ray diffraction, Raman spectrum and Transmission electron microscopy measurements. Subsequently, the hybrids were introduced into thermoplastic polyurethane matrix for acting as reinforcements. The hybrids were well dispersed in thermoplastic polyurethane and no obvious aggregation of graphene nanosheets was observed. The obtained nanocomposites exhibited significant improvements in thermal stability, flame retardancy, mechanical properties and reduced the fire toxicity effectively, compared with those of neat polyurethane. The obvious improvements of these properties were mainly attributed to the ‘‘tortuous path’’ effect of graphene nanosheets, catalytic char formation function of cobalt oxide–graphene hybrids and the synergism between the catalysis effect of cobalt oxide nanoparticles and the adsorption effect of graphene nanosheets.  相似文献   

17.
Nanocomposites based on diglycidyl ether of bisphenol A (DGEBA) epoxy reinforced with 1–10 wt% I.30E nanoclay were fabricated using high shear mixing technique and characterized to determine the effects of clay loading on their mechanical, thermal, and water uptake properties. The XRD and TEM analyses revealed that the structures of the resultant nanocomposites were a combination of disordered intercalated and exfoliated morphologies. Tensile strength increased for nanocomposite containing 1 % clay loading and decreased for higher nanoclay loading. Unlike strength, the stiffness increased almost linearly with clay loading, showing 46 % improvement in modulus of elasticity for nanocomposites containing 5 % of nanoclay. Water uptake measurements indicated enhancement in the barrier properties of epoxy matrix as nanoclay loading increased from 1 up to 5 wt%.  相似文献   

18.
Interface control and dispersion of graphene base nanomaterials in polymer matrix are challenging to develop high comprehensive nanocomposites due to their strong interlayer cohesive energy and chemical inertia. In this research, an efficient approach is presented to functionalize reduced graphene oxide nanosheets by N-[3-(trimethoxylsilyl)propyl]ethylenediamine, which is dispersed into polyacrylonitrile to prepare N-[3-(trimethoxylsilyl)propyl]ethylenediamine – reduced graphene oxide/polyacrylonitrile nanocomposites. A thermogravimetric analysis technique was employed to evaluate thermal properties of the nanocomposites. The tribological properties of the polyacrylonitrile/graphene nanocomposites were investigated. The morphologies and volume of the worn surface were examined using a 3D profilometer. The impact of loading ratio on friction coefficient, carry-bearing capacity and durability were studied. The N-[3-(trimethoxylsilyl)propyl]ethylenediamine – reduced graphene oxide/polyacrylonitrile nanocomposite with appropriate loading ratio of reduced graphene oxide exhibited a high load-bearing capacity and durability. Therefore, the polyacrylonitrile/graphene nanocomposite shows promising potential to industrial applications involving the lubrication and anti-wear.  相似文献   

19.
The present study explored the effect of nanoclay on the properties of the ethylene–propylene–diene rubber (EPDM)/carbon black (CB) composites. The nanocomposites were prepared with 40 wt% loading of fillers, where the nanoclay percentage was kept constant at 3 wt%. As the modified nanoclay contains the polar groups and the EPDM matrix is nonpolar, a polar rubber oil extended carboxylated styrene butadiene rubber (XSBR), was used during the preparation of nanocomposites to improve the compatibility. Primarily the nanoclay was dispersed in XSBR by solution mixing followed by ultrasonication. After that EPDM-based, CB–clay hybrid nanocomposites, were prepared in a laboratory scale two roll mill. The dispersion of the different nanoclay in the EPDM matrix was observed by wide-angle X-ray diffraction (WAXD) and high resolution transmission electron microscopy. It was found that the mechanical properties of the hybrid nanocomposites were highly influenced by the dispersion and exfoliation of the nanoclays in the EPDM matrix. Thermo gravimetric analysis, scanning electron microscopy and dynamic mechanical thermal analysis was carried out for each nanocomposite. Among all the nanocomposites studied, the thermal and mechanical properties of Cloisite 30B filled EPDM/CB nanocomposite were found to be highest.  相似文献   

20.
The preparation of conducting graphene/polyaniline–sodium dodecylbenzenesulfonate (PANI–SDBS) nanocomposites using synthesised graphene as the starting material is successfully conducted in the present study. The effect of the anionic surfactant SDBS on the properties of the graphene/PANI–SDBS nanocomposites is studied. The structure and morphology of the synthesised nanocomposites are characterised by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) spectrophotometry, X-ray diffraction and atomic force microscopy (AFM). The electrical conductivity properties of the resulting nanocomposites are determined using a resistance meter measurement system. The FESEM and TEM images reveal that the addition of SDBS surfactant to the PANI transforms the nanofibers of the PANI to a nanosphere morphology of PANI–SDBS. FTIR and UV–vis studies reveal that the conductive graphene/PANI–SDBS nanocomposites are successfully synthesised. AFM characterisation shows that the addition of graphene reduces the root mean square roughness of the surface of the PANI. The electrical conductivity and thermal stability of the PANI are improved after the introduction of SDBS. The nanocomposites containing a 5 wt% graphene loading exhibit the highest electrical conductivity of 2.94?×?10?2 S/cm, which is much higher than that of PANI (9.09?×?10?6 S/cm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号