首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new and convenient route is developed to synthesize CdSe and core–shell CdSe/CdS quantum dots (QDs) in aqueous solution. CdSe QDs are prepared by introducing H2Se gas into the aqueous medium containing Cd2+ ions. The synthesized CdSe QDs are further capped with CdS to form core–shell CdSe/CdS QDs by reacting with H2S gas. The gaseous precursors, H2Se and H2S, are generated on-line by reducing SeO3 2? with NaBH4 and the reaction between Na2S and H2SO4, and introduced sequentially into the solution to form CdSe and CdSe/CdS QDs, respectively. The synthesized water-soluble CdSe and CdSe/CdS QDs possess high quantum yield (3 and 20 %) and narrow full-width-at-half-maximum (43 and 38 nm). The synthesis process is easily reproducible with simple apparatus and low-toxic chemicals. The relatively standard deviation of maxima fluorescence intensity is only 2.1 % (n = 7) for CdSe and 3.6 % (n = 7) for CdSe/CdS QDs. This developed route is simple, environmentally friendly and can be readily extended to the large-scale aqueous synthesis of QDs.  相似文献   

2.
Free-standing TiO2 nanotube (NT) arrays have been prepared by a two-step anodization method. These translucent TiO2 NT arrays can be transferred to the fluorine-doped tin oxide glass substrates to form front-side illuminated TiO2 NT electrodes. The TiO2 NT electrodes were double-sensitized by CdSe/CdS quantum dots (QDs) through successive ionic layer adsorption and reaction (SILAR) process. The absorption range of the TiO2 NT electrode was extended from ~380 to 700 nm after sensitization with CdSe/CdS QDs. The SILAR cycles were investigated to find out the best combination of CdS and CdSe QDs for photovoltaic performance. The power conversion efficiency of 2.42 % was achieved by the CdSe(10)/CdS(8)/TiO2 NT solar cell. A further improved efficiency of 2.57 % was obtained with two cycles of ZnS overlayer on the CdSe(10)/CdS(8)/TiO2 NT electrode, which is 45.19 % higher than that of back-side illuminated solar cell. Furthermore, the ZnS(2)/CdSe(10)/CdS(8)/TiO2 NT solar cell possesses a higher stability than CdSe(10)/CdS(8)/TiO2 NT solar cell during the same period. The better photovoltaic performance of the ZnS(2)/CdSe(10)/CdS(8)/TiO2 NT solar cell has demonstrated the promising value to design quantum dots-sensitized solar cells with double-sensitized front-side illuminated TiO2 NT arrays strategy.  相似文献   

3.

In this work, two multilayer photoanode structures of TiO2/PbS(X)/CdS/ZnS/SiO2 and TiO2/PbS(X)/CdS/CdSe/ZnS/SiO2 were fabricated and applied in quantum dot-sensitized solar cells (QDSCs). Then, the effect of PbS QDs layer on the photovoltaic performance of corresponding cells was investigated. The sensitization was carried out by PbS and CdS QDs layers deposited on TiO2 scaffold through successive ionic layer adsorption and reaction (SILAR) method. The CdSe QDs film was also formed by a fast, modified chemical bath deposition (CBD) approach. Two passivating ZnS and SiO2 layers were finally deposited by SILAR and CBD methods, respectively. It was shown that the reference cell with TiO2/CdS/ZnS/SiO2 photoanode demonstrated a power conversion efficiency (PCE) of 3.0%. This efficiency was increased to 4.0% for the QDSC with TiO2/PbS(2)/CdS/ZnS/SiO2 photoelectrode. This was due to the co-absorption of incident light by low-bandgap PbS nanocrystalline film and also the CdS QDs layer and well transport of the charge carriers. For the CdSe included QDSCs, the PbS-free reference cell represented a PCE of 4.1%. This efficiency was improved to 5.1% for the optimized cell with TiO2/PbS(2)/CdS/CdSe/ZnS/SiO2 photoelectrode. The maximized efficiency was enhanced about 25% and 70% compared to the PbS-free reference cells with and without the CdSe QDs layer.

  相似文献   

4.
CdS and CdSe quantum dots were introduced as co-sensitizers into TiO2 inverse opal quantum dot sensitized solar cells. Herein, the three-dimensionally ordered porous TiO2 inverse opal film leads to a better infiltration of both sensitizers and hole transporting material, and the smaller surface area of TiO2 inverse opal film is effectively offset by the incorporating of co-sensitization. It was found that the presence of CdS/CdSe co-sensitizers provides enhanced light absorption, and leads to a lower recombination rate of the electrons due to the stepwise structure of band edge in TiO2/CdS/CdSe, which resulted in the observed enhanced photocurrent and energy conversion efficiency of the solar cells. A cell efficiency of 1.01 % has been attained.  相似文献   

5.
The improvement of sunlight utilization is a fundamental approach for the construction of high‐efficiency quantum‐dot‐based solar cells (QDSCs). To boost light harvesting, cosensitized photoanodes are fabricated in this work by a sequential deposition of presynthesized Zn–Cu–In–Se (ZCISe) and CdSe quantum dots (QDs) on mesoporous TiO2 films via the control of the interactions between QDs and TiO2 films using 3‐mercaptopropionic acid bifunctional linkers. By the synergistic effect of ZCISe‐alloyed QDs with a wide light absorption range and CdSe QDs with a high extinction coefficient, the incident photon‐to‐electron conversion efficiency is significantly improved over single QD‐based QDSCs. It is found that the performance of cosensitized photoanodes can be optimized by adjusting the size of CdSe QDs introduced. In combination with titanium mesh supported mesoporous carbon as a counterelectrode and a modified polysulfide solution as an electrolyte, a champion power conversion efficiency up to 12.75% (Voc = 0.752 V, Jsc = 27.39 mA cm?2, FF = 0.619) is achieved, which is, as far as it is known, the highest efficiency for liquid‐junction QD‐based solar cells reported.  相似文献   

6.
CdS/CdSe quantum dot-sensitized solar cells (QDSCs) based on ZnO nanorods, 4.55 μm in length, were studied. Many studies have shown that the performance of QDSCs is limited by a recombination process. Therefore, the interface layer was fabricated on the surface of the ZnO nanorods to retard recombination at the interface between the semiconductor and electrolyte. Overall, the performance of the QDSCs was improved by a surface coating of aluminum isopropoxide (Al2O3) on the ZnO nanorod, which facilitates a decrease in electron recombination and increased adsorption of CdS/CdSe QDs on the ZnO nanorods.  相似文献   

7.
Incorporating cadmium sulfide quantum dots (CdS QDs) onto ZnO nanorod (ZNRs) has been investigated to be an efficient approach to enhance the photovoltaic performance of the inverted organic solar cell (IOSC) devices based on ZNRs/poly (3-hexylthiophene) (P3HT). To synthesize CdS/ZNRs, different durations of deposition per cycle from 1 to 9 min were used to deposit CdS via SILAR technique onto ZNRs surface grown via hydrothermal method at low temperature on FTO substrate. In typical procedures, P3HT as donor polymer were spun-coating onto CdS/ZNRs to fabricate IOSC devices, followed by Ag deposition as anode by magnetron sputtering technique. Incorporation of CdS QDs has modified the morphological, structural, and optical properties of ZNRs. Incorporation of CdS QDs onto ZNRs also led to higher open circuit voltage (Voc) and short circuit current density (Jsc) of optimum ZNRs/CdS QDs devices due to the increased interfacial area between ZNRs and P3HT for more efficient exciton dissociation, reduced interfacial charge carrier recombination as a result of lower number of oxygen defects which act as electron traps in ZnO and prolonged carrier recombination lifetime. Therefore, the ZNRs/CdS QDs/P3HT device exhibited threefold higher PCE (0.55%) at 5 min in comparison to pristine ZNR constructed device (0.16%). Overall, our study highlights the potential of ZNRs/CdS QDs to be excellent electron acceptors for high efficiency hybrid optoelectronic devices.  相似文献   

8.
The photovoltaic characterization of CdSe quantum dots sensitized solar cells (QDSSCs) by tuning band gap of CdSe quantum dots (QDs) through size control has been investigated. Fluorine doped tin oxide (FTO) substrates were coated with 20 nm in diameter TiO2 nanoparticles (NPs). Pre-synthesized colloidal CdSe quantum dots of different sizes (from 4.0 to 5.4 nm) were deposited on the TiO2-coated substrates using direct adsorption (DA) method. The FTO counter electrodes were coated with platinum, while the electrolyte containing I?/I 3 ? redox species was sandwiched between the two electrodes. The current density-voltage (J-V) characteristic curves of the assembled QDSSCs were measured for different dipping times, and AM 1.5 simulated sunlight. The maximum values of short circuit current density (Jsc) and conversion efficiency (η) are 1.62 mA/cm2 and 0.29 % respectively, corresponding to CdSe QDs of size 4.52 nm (542 nm absorption edge) and of 6 h dipping time. The variation of the CdSe QDs size mainly tunes the alignment of the conduction band minimum of CdSe with respect to that of TiO2 surface. Furthermore, the Jsc increases linearly with increasing intensity of the sun light, which indicates the sensitivity of the assembled cells.  相似文献   

9.
10.
Luminescent solar concentrators (LSCs) can potentially reduce the cost of solar cells by decreasing the photoactive area of the device and boosting the photoconversion efficiency (PCE). This study demonstrates the application of “giant” CdSe/CdxPb1–xS core/shell quantum dots (QDs) as light harvesters in high performance LSCs with over 1.15% PCE. Pb addition is critical to maximize PCE. First, this study synthesizes “giant” CdSe/CdxPb1–xS QDs with high quantum yield (40%), narrow size distribution (<10%), and stable photoluminescence in a wide temperature range (100–300 K). Subsequently these thick alloyed‐shell QDs are embedded in a polymer matrix, resulting in a highly transparent composite with absorption spectrum covering the range 300–600 nm, and are applied as active material for prototype LSCs. The latter exhibits a 15% enhancement in efficiency with respect to 1% PCE of the pure‐CdS‐shelled QDs. This study attributes this increase to the contribution of Pb doping. The results demonstrate a straightforward approach to enhance light absorption in “giant” QDs by metal doping, indicating a promising route to broaden the absorption spectrum and increase the efficiency of LSCs.  相似文献   

11.
A large amount of ZnO with a three-dimensional sphere-like morphology has been synthesized by a facile hydrothermal route and applied as the photoanode material in CdS quantum dots sensitized solar cells (QDSSCs). After the modification of the dye co-sensitized process, an overall power conversion efficiency of 2.32 % with a short-circuit current density of 9.25 mA/cm2 was obtained in ZnO/CdS/dye-QDSSC, which shows 66.9 and 49.4 % respective improvement over that of pure ZnO/CdS–QDSSC. This result is attributed to its superiority in light absorption and charge–hole separation for the ZnO/CdS/dye-QDSSC.  相似文献   

12.
光吸收在提高量子点敏化太阳能电池(QDSSCs)的功率转换效率(PCE)方面起着至关重要的作用.本研究采用简单的刮涂法将多功能长余辉荧光层(LPP)引入到CdS/CdSe QDSSCs中.LPP层不仅可以增强光的捕获,还可以加速CdS/CdSe QDSSCs的电荷转移.因此,LPP层的引入有效地提高了CdS/CdSe QDSSCs的短路电流密度和相应的PCE.当采用橄榄绿荧光层时,PCE高达5.07%,与常规CdS/CdSe QDSSCs(4.08%)的功率转换效率相比,PCE提高了24%.此外,经过一分钟的太阳光照射(AM 1.5G,100 mW cm^-2),由于LPPs的储能特性,太阳能电池可在黑暗中继续工作.本研究不仅为QDSSCs提供了提高PCE的有效方法,而且为全天候QDSSCs的制备提供了可能.  相似文献   

13.
Crystal growth of semiconductor quantum dots (QDs) adsorbed on nanostructured TiO2 electrodes is important not only for crystallographic studies but also for improving the photovoltaic efficiency of semiconductor-sensitized solar cells. In this study, nanostructured TiO2 electrodes using supporting Ti substrates were prepared. These electrodes are then adsorbed with self-assembled CdSe QDs as photosensitizers to investigate the crystal growth and photoelectrochemical current properties. Average diameters of the CdSe QDs can be estimated from optical absorption spectra by using photoacoustic (PA) technique. PA technique is a powerful tool for evaluating the optical absorption of opaque and scattered samples because of the detection by photothermal phenomenon. When the adsorption time increases, the CdSe QDs diameter increases and then shows saturation for all the cases. Normal solution growth plus suppression (negative growth) contributions can be derived by PA spectroscopic analysis. Both of them depend on adsorption temperatures for CdSe QDs formation. Photosensitization of the nanostructured TiO2 electrodes in the visible region resulting from CdSe QDs deposition can be clearly observed. Incident photon to current conversion efficiency (IPCE) of CdSe QDs adsorbed at high temperature formation is smaller than that adsorbed at low temperature one, indicating the increase of recombination centers with increasing adsorption temperature. This implies that negative growth, or dissolving effect, produces much more recombination centers inside of CdSe QDs and/or interface between the QDs and TiO2.  相似文献   

14.
TiO2 nanoparticles (NP) at top of TiO2 nanotube (TiO2 NP@TiO2NT) double-layered architecture is constructed to combine the advantages of TiO2 NP and TiO2 NT together. This composite TiO2 NP@TiO2NT architecture as photoanode possesses a larger surface area for more QDs loading, and highly tubular structure for electron swift transport. Based on this architecture, CdSe/CdS quantum dots (QDs) have been successfully synthesized by successive ionic layer adsorption reaction (SILAR) method for quantum dots-sensitized solar cell application. The photovoltaic performance of QDSSCs based on TiO2 NP@TiO2 NT have been investigated in contrast with bare TiO2 NP and bare TiO2 NT architectures with almost the same thickness. The results show that the power conversion efficiency (PCE) of QDSSCs could be enhanced using TiO2 NP@TiO2 NT and improved to 3.26%, which is 80% and 38% higher than QDSSCs based on bare TiO2 NT and bare TiO2 NP, respectively. The BET surface area, UV–vis absorption spectra, and incident photon to current conversion efficiency (IPCE) measurements results show the evidence that the TiO2 NP@TiO2 NT can combine advantages of TiO2 NP and TiO2 NT structures together and lead to a higher light harvesting efficiency, electron collecting efficiency, and efficient electron transport.  相似文献   

15.
We demonstrate an organic synthesis to fabricate hydrophobic core/shell CdSe/Cd1?x Zn x S quantum dots (QDs) with tunable photoluminescence (PL) between green and red at relatively low temperature using trioctylphosphine S reacted directly with cadmium and zinc acetate. A seeded growth strategy was used for preparing large CdSe cores. Large CdSe cores revealed a rod-like morphology while small one exhibited a spherical shape. Being coated with a Cd1?x Zn x S shell on spherical CdSe cores with an average size of 3.9 nm in diameter, core/shell QDs exhibited a cubic morphology (a length of 5 nm). In contrast, the core/shell QDs created using a small core (3.3 nm in diameter) show a spherical morphology. Namely, the anisotropic aggregation behavior of CdS monomers on CdSe cores occurs when the rod-like core is coated with a Cd1?x Zn x S shell. CdS interlayer plays an important role for such morphology evolution because all CdSe cores with a pure ZnS shell exhibited a spherical morphology. The PL properties of CdSe/Cd1?x Zn x S core/shell QDs depended strongly on the size and morphology of the cores. The QDs revealed a narrow and tunable PL spectrum. It is believed that this facile strategy can be extended to synthesize other core–shell QDs at low temperature.  相似文献   

16.
Semiconducting quantum dots (QDs) have recently triggered a huge interest in constructing efficient hydrogen production systems. It is well established that a large fraction of surface atoms of QDs need ligands to stabilize and avoid them from aggregating. However, the influence of the surface property of QDs on photocatalysis is rather elusive. Here, the surface regulation of CdSe QDs is investigated by surface sulfide ions (S2?) for photocatalytic hydrogen evolution. Structural and spectroscopic study shows that with gradual addition of S2?, S2? first grows into the lattice and later works as ligands on the surface of CdSe QDs. In‐depth transient spectroscopy reveals that the initial lattice S2? accelerates electron transfer from QDs to cocatalyst, and the following ligand S2? mainly facilitates hole transfer from QDs to the sacrificial agent. As a result, a turnover frequency (TOF) of 7950 h?1 can be achieved by the S2? modified CdSe QDs, fourfold higher than that of original mercaptopropionic acid (MPA) capped CdSe QDs. Clearly, the simple surface S2? modification of QDs greatly increases the photocatalytic efficiency, which provides subtle methods to design new QD material for advanced photocatalysis.  相似文献   

17.
Cerium oxide quantum dots (CeO2 QDs) decorated zinc oxide nanorods (ZnO NRs) heterostructures were grown by a combination of solvothermal and chemical bath deposition methods and used for dye sensitized solar cell (DSSC) applications. Transmission electron microscope images showed the formation of CeO2/ZnO NRs, where ~5 nm CeO2 QDs were decorated on ZnO NRs having 1–2.5 μm length and 100–150 nm width. Photoluminescence spectra showed the significant increase in UV emission after decoration of ZnO NRs with CeO2 QDs. DSSC results revealed that the ZnO NRs with CeO2 QDs leads to an increase in the open circuit voltage and fill factor and exhibited a maximum efficiency of 2.65 %, which was 2.01 times higher than that of unmodified ZnO NRs. The decoration of CeO2 QDs on the ZnO NRs surface may lead to the formation of barrier layer and hindered the back electron transfer and thereby high light harvesting efficiency.  相似文献   

18.
The present work reports synthesis of mercaptoacetic acid capped CdSe nanoparticles soluble in water at different temperatures and with different precursor ratios. This enabled to tune the particle size of QDs from 2.7 to 5.8 nm. The particles consist of nanocrystals; with mixed phase, hexagonal wurtzite as well as sphalerite cubic and are luminescent with quantum yield 10%. The quantum yield up to 20% has been obtained by growing a shell of CdS over the CdSe. HR-TEM images, XRD patterns and the photoluminescence excitation spectra shows epitaxial growth of CdS shell over CdSe and with average size 3.2 ± 1.2 and 4.7 ± 1.2 nm for CdSe and CdSe/CdS quantum dots respectively. FT-IR spectrum and the negative zeta potential value together confirms the attachment of mercaptoacetic acid to the QD surface, where the carboxylic acid group is facing towards solvent and provides stability due to electrostatic hindrance. Further, the QDs are checked for their stability and the luminescence in environments of different pH (4–11 pH). Both CdSe and CdSe/CdS agglomerate with total elimination of fluorescence for 4 pH medium, and no shift in the fluorescence emission peak observed for the 6–9 pH, therefore QDs can be applicable as the fluorescence tags in this specific range of pH.  相似文献   

19.
Cadmium selenide quantum dots (CdSe QDs) were successfully synthesized without using trioctylphosphine (TOP). The XRD pattern showed zinc-blend phase of the CdSe QDs. The absorption and PL spectra exhibit a strong blue shift as the QDs size decreases due to the quantum confinement effect. In addition, the quantum efficiency of CdSe QDs with TOP capping is higher than CdSe QDs with oleic acid capping. TEM image shows a spherical shape, compact and dense structure of CdSe QDs. A good agreement between the Tauc's model and experimentally measured absorption spectra of CdSe QDs is achieved. The FTIR peak at ~1712 cm?1 spectra confirms the influence of oleic acid as a capping agent.  相似文献   

20.
Water soluble, thioglycolic acid (TGA) modified CdSe nanocrystals (NCs) have been prepared in aqueous media by the reaction between Cd2+ and NaHSe. Although initially these quantum dots (QDs) display photoluminescence (PL) with very low quantum yields (QY), upon prolonged exposure to ambient light, a strong PL enhancement by illumination is observed which leads to water soluble QDs with high luminescence. This result may have important application potential in biological or other fields. The primary reason for the luminescence enhancement is concluded to be the incorporation of sulfide ions from TGA into the lattice of CdSe NCs and the subsequent formation of alloy structures. Moreover, the CdSe/CdS core-shell structured QDs synthesized in aqueous solutions also consolidate this conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号