首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Heavy components of ductile cast iron frequently exhibit metallurgical defects that behave like cracks under cyclic loading. Thus, in order to decide whether a given defect is permissible, it is important to establish the fatigue crack growth properties of the material. In this paper, results from a comprehensive study of ductile cast iron EN‐GJS‐400‐18‐LT have been reported. Growth rates of fatigue cracks ranging from a few tenths of a millimetre (‘short’ cracks) to several millimetres (‘long’ cracks) have been measured for load ratios R=?1, R= 0 and R= 0.5 using a highly sensitive potential‐drop technique. Short cracks were observed to grow faster than long cracks. The threshold stress intensity range, ΔKth, as a function of the load ratio was fitted to a simple crack closure model. Fatigue crack growth data were compared with data from other laboratories. Single plain fatigue tests at R=?1 and R= 0 were also carried out. Fracture toughness was measured at temperatures ranging from ?40 °C to room temperature.  相似文献   

2.
For the fatigue assessment of the nodular cast iron ASTM 80‐55‐06 (EN‐GJS‐600) stress‐controlled fatigue tests were performed at testing frequencies of f = 5 and 150 Hz. Mechanical (f = 5 Hz), temperature, electrical resistance, and frequency (f = 150 Hz) measurements during cyclic loading provide the possibility to get detailed information about fatigue processes like cyclic hardening or graphite‐matrix debonding. Temperature measurements are well suitable to evaluate the influence of the testing frequency on the cyclic deformation behavior. Increasing testing frequencies result in higher values of the change in temperature caused by the increasing heat dissipation per second. On the basis of the measured data from only three fatigue tests the fatigue life calculation method “PHYBALLIT” (Load Increase Tests) can be applied on the investigated cast iron. Woehler (SN) curves calculated for testing frequencies of 5 and 150 Hz yield an excellent accordance with conventionally determined ones. The application of this short‐time procedure leads to enormous scientific and economic advantages.  相似文献   

3.
Structural Durability of Cast Magnesium Components under Impact and Cyclic Loading without and with Plastic Pre‐Deformations due to Special Events Specimens and engine brackets manufactured by the high pressure die cast magnesium alloy MRI‐4 showed superior fatigue properties under constant amplitude loading compared to AZ‐91. No significant differences were observed by impact tests with components. However MRI‐4 components presented a lower fatigue life under variable amplitude loading and a real damage sum, which was significantly lower than 1. A plastic pre‐deformation of the MRI‐4 components increased their fatigue strength, while the components of AZ‐91 revealed a neutral behaviour.  相似文献   

4.
In the present paper methods based on the related stress gradient χ* and the highly stressed material volume HBV90% for the assessment of the structural durability of high‐strength ductile iron components are presented. Approximate solutions were formulated on the basis of extensive fatigue tests under constant amplitude loading using specimens from the alloys EN‐GJS‐500‐7, SiboDur 700‐10 and MADI. The estimated fatigue strengths were validated by tests with the so‐called “Pulsing Dummy Model Bodies”, samples with a bore intersection with an angle of 45° as critical area.  相似文献   

5.
Reliable numerical fatigue life analyses are becoming increasingly important given the need to reduce the time and costs for product development and the need to evaluate large and single components. Stress‐based approaches as well as the local strain approach and its fracture mechanics based extension (PJ model) are in use for that. Both the local strain approach and the PJ model require the supply of pure material data. This requirement for input data that are not component‐specific makes such approaches interesting for widespread application. The accuracy of numerical fatigue life analyses is an essential criterion for the acceptance and the spread in industrial application. In the local strain approach, accuracy is determined on one hand by the transferability of material data for the fatigue life analysis of components and on the other by the damage accumulation rule. In this paper, the local strain approach and the PJ model are used to analyse fatigue life under both constant and variable amplitude loading. These analyses are based on the experimental results obtained from tests of a commercial vehicle component made of nodular cast iron EN‐GJS‐400‐15. Aspects of transferability and damage accumulation are considered. Results obtained from using an elastic‐plastic fracture mechanics based approach to estimate a PSWT‐N curve, taken into account the inhomogeneities in the microstructure of the cast iron, are also presented.  相似文献   

6.
Nowadays cast iron components are widely used in highly stressed structures. Component lifetime is strongly influenced by inhomogeneities caused by the material's microstructure and the manufacturing process (graphite particles, (micro‐)shrinkage pores, inclusions). Inhomogeneities often act as a fatigue crack starter. Lifetime until failure may be divided into stages for crack initiation, short and long crack growth. Initiation of a crack of technical size (a ≈ 1mm) is often dominated by the growth of short cracks. The paper presents an approach to analyse the mechanically short fatigue crack growth based on elastic‐plastic fracture mechanics considering the closure behaviour of short cracks. The effective J‐integral range is used as a crack driving force. Finite element analysis results as well as analytical solutions to approximate the crack driving force are presented. The application of the approach is successfully demonstrated for cast iron material EN‐GJS‐400‐18‐LT using data from fatigue tests, microstructure and fracture surface analyses to assess the fatigue life.  相似文献   

7.
This research work aimed to find out the influences of the different amounts of chunky graphite on mechanical and fatigue properties of GJS 800 ductile cast iron. Chunky graphite has been a problem of heavy section thick-walled ductile cast iron components. Chunky graphite is branched and interconnected as a network within eutectic cells and has been observed to form in thermal centres of heavy ductile cast iron sections during solidification. This research work proved that chunky graphite in the microstructure decreases the ultimate tensile strength, the elongation to fracture and fatigue life significantly, but does not influence on the yield stress of ductile cast iron GJS 800 substantially. Low nodular count and nodularity rate also decrease the fatigue life of ductile cast iron, and the difference of fatigue life of specimens containing chunky graphite or having low nodular count and nodularity rate is not large. Influence of the amount of chunky graphite on fatigue life increases until 20% chunky graphite content, and above that the fatigue life does not decrease substantially.  相似文献   

8.
This paper discusses eight methods for presenting fatigue test results for variable amplitude loading and their comparison with constant amplitude loading. While the maximum amplitude method compares constant and variable amplitude loading results by the Woehler and Gassner curves, all other seven methods try to transform the variable amplitude results into the Woehler curve by applying different equations. The advantage of the maximum amplitude method is the direct comparison of the maximum amplitude of the spectrum with the yield strength and with the high‐cycle fatigue strength, which is an important step in structural design. Among the other methods, the best results were obtained by following: most damaging, half damage and mean damage amplitudes. However, the presentation of constant and variable amplitude results by these methods in one scatter band is possible only when the real damage sum is close to D = 1.0.  相似文献   

9.
A round‐robin investigation has been performed, where stress analysts from eight different organisations carried out a total of 11 predictions of the expected fatigue limit of a diametrically loaded cast ring subjected to fluctuating tensile or compressive loading. Whereas geometry, load parameters, and type and quality of material (spheroidal graphite cast iron EN‐GJS‐600‐3) had been prescribed, the participants were free to use computational tools and models, and fatigue assessment models and data of their own choice. The objectives of the investigation were to compare the 11 predictions (i) among themselves, and (ii) with a posteriori experimental fatigue limits determined by means of stair‐case testing. The fatigue limit predictions showed coefficients of variation of as large as 25%. Even for a group of analysts from a single organisation, the coefficients variation were around 15%. Fatigue tests gave mean fatigue limits 60% (tensile loading) and 30% (compressive loading) above the a priori predictions. Possible reasons for the large deviations between single predictions and for their conservatism have been proposed. It seems that design engineers (i) make use of the available room for interpretation of models and data, and (ii) have an unconscious tendency to make conservative assumptions. Only if models and data for fatigue assessment are prescribed in great detail, can the ‘scatter’ among fatigue limit predictions be expected to decrease below 15–25%. Improved ‘absolute’ predictions would require more accurate fatigue data.  相似文献   

10.
Cast iron has become a popular cast metal material which is widely used in modern industry and today's technology because of its low cost and desirable properties such as good castability, convenient machining properties, better wear resistance, etc. This paper is concerned with the variation of mechanical properties depending on section thickness of nodular cast iron. Firstly manufacturing process of GGG40 (EN‐GJS‐400‐15/DIN 1693 or 60‐40‐18/ASTM A536) nodular (ductile) cast iron was performed. Sand mould casting was only used as a molding process. Following, convenient moulds were prepared and the casting process was carried out in moulds that have different diameters (≤30 mm) to examine the cooling rate effects to the mechanical properties. Finally, tensile, hardness, metallography and fatigue tests were applied to cast materials test specimens. The results show that the cooling rate which is related to the section thickness affects the mechanical properties clearly.  相似文献   

11.
Surface modification processes are increasingly used to fully exploit material potential in fatigue critical applications because fatigue strength is sensitive to surface conditions. Nitriding is extensively adopted with ferrous materials because it forms a hard and strong surface layer and a system of superficial compressive residual stresses. Fatigue, however, is strongly dependent also on defects and inhomogeneity. When nitriding is applied to nodular cast iron, the relatively thin hardened layer (about 300 μm) contains graphite nodules (diameter of the order of 30 μm), casting defects and a heterogeneous matrix structure. The paper presents and discusses the influence of nitriding on the fatigue response and fracture mechanisms of nodular cast iron. A ferritic nodular cast iron and a synthetic melt with different content of effective ferrite were initially gas-nitrided. Then, (i) structural analysis of nitrided layers, (ii) fatigue testing with rotating bending specimens, and (iii) fatigue fracture surface inspection were performed. Performance and scatter in fatigue performance is discussed by selective inspection of fracture surfaces and identification fracture micromechanisms. A semiempirical model explains observed trends in test results and is used for the process optimization. __________ Translated from Problemy Prochnosti, No. 1, pp. 85–88, January–February, 2008.  相似文献   

12.
Load controlled fatigue tests were performed up to 107 cycles on flat notched specimens (Kt = 2.5) under constant amplitude and variable amplitude loadings with and without periodical overloads. Two materials are studied: a ferritic‐bainitic steel and a cast aluminium alloy. These materials have a very different cyclic behaviour: the steel exhibits cyclic strain softening whereas the Al alloy shows cyclic strain hardening. The fatigue tests show that, for the steel, periodical overload applications reduce significantly the fatigue life for fully reversed load ratio (Rσ = –1), while they have no influence under pulsating loading (Rσ = 0). For the Al alloy overloads have an effect (fatigue life decreasing) only for variable amplitude loadings. The detrimental effect of overloads on the steel is due to ratcheting at the notch root which evolution is overload's dependent.  相似文献   

13.
Most fatigue loaded components or structures experience a variety of stress histories under typical operating loading conditions. In the case of constant amplitude loading the fatigue crack growth depends only on the component geometry, applied loading and material properties. In the case of variable amplitude loading the fatigue crack growth depends also on the preceding cyclic loading history. Various load sequences may induce different load-interaction effects which can cause either acceleration or deceleration of fatigue crack growth. The recently modified two-parameter fatigue crack growth model based on the local stress–strain material behaviour at the crack tip [1,2] was used to account for the variable amplitude loading effects. The experimental verification of the proposed model was performed using 7075-T6 aluminum alloy, Ti-17 titanium alloy, and 350WT steel. The good agreement between theoretical and experimental data shows the ability of the model to predict the fatigue life under different types of variable amplitude loading spectra.  相似文献   

14.
A test rig for simultaneous testing of up to 88 compression springs under constant as well as variable amplitude loading is presented in this paper. The test rig utilizes a servo‐hydraulic testing machine. The results of long‐term fatigue tests of compression springs under constant and variable amplitude loading up to 5 ? 108 and 1.4 ? 107 cycles are presented. Experimental Woehler‐ and Gassner‐curves are obtained using the maximum likelihood method. Theoretical Gassner‐curves are generated using Miner's rule and experimental Woehler‐curves. The theoretical Gassner‐curves are compared to the experimental ones. The results of the constant amplitude loading tests are compared to literature data. The possibility to increase the testing frequency in variable amplitude loading tests is discussed. Thereto, the comparability of results from fatigue tests of material specimens using torsional ultrasonic fatigue testing equipment to results from fatigue tests on compression springs is addressed.  相似文献   

15.
Graphite nodules in spheroidal graphite cast iron (SGI) play a vital role in fatigue crack initiation and propagation. Graphite nodules growth morphology can go through transitions to form degenerated graphite elements other than spheroidal graphite nodules in SGI microstructure. These graphite particles significantly influence damage micromechanisms in SGI and could act differently than spheroidal graphite nodules. Most of the damage mechanism studies on SGI focused on the role of spheroidal graphite nodules on the stable crack propagation region. The role of degenerated graphite elements on SGI damage mechanisms has not been frequently studied. In this work, fatigue crack initiation and propagation tests were conducted on EN‐GJS‐500‐14 and observed under scanning electron microscope to understand the damage mechanisms for different graphite shapes. Crack initiation tests showed a dominant influence of degenerated graphite elements where early cracks initiated in the microstructure. Most of the spheroidal graphite nodules were unaffected at the early crack initiation stage, but few of them showed decohesion from the ferrite matrix and internal cracking. In the crack propagation region, graphite/ferrite matrix decohesion was the frequent damage mechanism observed with noticeable crack branching around graphite nodules and the crack passing through degenerated graphite elements. Finally, graphite nodules after decohesion acted like voids which grew and coalesced to form microcracks eventually causing rapid fracture of the remaining section.  相似文献   

16.
An innovative approach for predicting the reliability of a structure that is subject to a variable‐amplitude dynamic load is presented. In this approach, a Gassner durability curve with its scatter is modelled using a 2‐parametric Weibull's probability density function (PDF). The trend of the Gassner durability curve is modelled with a general hyperbola equation in a log‐log scale. The hyperbola equation is applied to represent the durability curve for the 63.2% probability of fatigue failure that describes the dependency of the Weibull's scale parameter on the loading spectrum's maximum stress. Equations are derived to link the parameters of the hyperbola curve to the material's S‐N curve and the loading spectrum. The Weibull's shape parameter is estimated from the scatter of the material's S‐N curve. The proposed Gassner‐curve model is applied to calculate the fatigue reliability from the PDF of the loading spectrum's maximum stress and the PDF of the durability‐curve's amplitude stress for the selected number of loading‐cycles‐to‐failure.  相似文献   

17.
In the last decades, the combination of high mechanical performances and low production costs increased the industrial interest on ductile cast irons. These grades are often used for applications where the fatigue resistance can be a critical issue (eg, machine frames for the wind‐power industry or crankshaft used in trucks) and the investigation of the main damaging mechanisms during both the crack initiation and the crack propagation stage could offer new perspectives about these alloys. Ductile cast irons can be considered as a natural composite, being characterized by graphite elements (nodules) embedded in a more or less ductile matrix (ranging from fully ferritic to pearlitic, from martensitic to austempered). In this work, the fatigue crack initiation mechanisms were investigated considering different matrix microstructure and the presence of a mechanical properties gradient in the graphite nodules.  相似文献   

18.
A simple model for estimating the stress/strain response of grey cast iron subjected to variable amplitude cyclic loading is presented. Material properties for the model are readily determined from the tensile and compressive stress/strain curve of the material.  相似文献   

19.
The fatigue strength of welded joints can be improved with various post‐weld treatment methods. High‐frequency mechanical impact treatment is a residual stress modification technique that creates compressive residual stresses at the weld toe. However, these beneficial residual stresses may relax under certain loading conditions. In this paper, previously published fatigue data for butt and fillet welded joints subjected to high stress ratios and variable amplitude cyclic stresses were evaluated in relation to the current International Institute of Welding (IIW) recommendations on fatigue strength improvement and a proposed IIW design guideline for high‐frequency mechanical impact‐treated welded joints. The evaluation showed that the current IIW recommendations resulted in both non‐conservative and overly conservative fatigue strength estimations depending on the applied stress level, whereas the proposed fatigue assessment guideline fitted the current data well.  相似文献   

20.
In this work laser‐welded tube‐tube specimens made of aluminium alloys AlMg3.5Mn and AlSi1MgMn T6 were experimentally tested under constant and variable amplitude loading, under pure axial and pure torsion loading. In order to evaluate the influence on fatigue behaviour of the residual stresses, because of the welding process, some specimens were subjected to postweld heat treatment and then were tested. The numerical analyses, using finite element (FE), were carried out to obtain a reliable estimation of the residual stress in the specimen. The numerical results were in a good agreement with experimental ones obtained by means of hole‐drilling method. Finally, the residual stress distribution was superimposed to stress distribution because of fatigue loads obtained by FE analyses applying local concept, to calculate the stresses in the crack initiation zone and to understand the different types of failure that occurred in as‐welded and relieved specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号