首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
Wei-Chi Lai  Tai-Tso Lin 《Polymer》2004,45(9):3073-3080
The effect of end groups (2OH, 1OH, 1CH3 and 2CH3) of poly(ethylene glycol) (PEG) on the miscibility and crystallization behaviors of binary crystalline blends of PEG/poly(l-lactic acid) (PLLA) were investigated by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). A single glass-transition temperature was observed in the DSC scanning trace of the blend with a weight ratio of 10/90. Besides, the equilibrium melting point of PLLA decreased with the increasing PEG. A negative Flory interaction parameter, χ12, indicated that the PEG/PLLA blends were thermodynamically miscible. The spherulitic growth rate and isothermal crystallization rate of PEG or PLLA were influenced when the other component was added. This could cause by the change of glass transition temperature, Tg and equilibrium melting point, T0m. The end groups of PEG influenced the miscibility and crystallization behaviors of PEG/PLLA blends. PLLA blended with PEG whose two end groups were CH3 exhibited the greatest melting point depression, the most negative Flory interaction parameter, the least fold surface free energy, the lowest isothermal crystallization rate and spherulitic growth rate, which meant better miscibility. On the other hand, PLLA blended with PEG whose two end groups were OH exhibited the least melting point depression, the least negative Flory interaction parameter, the greatest fold surface free energy, the greatest isothermal crystallization rate and spherulitic growth rate.  相似文献   

2.
The non‐isothermal and isothermal crystallizations of extruded poly(l ‐lactic acid) (PLLA) blends with 10, 20 and 30 wt% poly(ethylene glycol) (PEG) were investigated with differential scanning calorimetry. The formation of α‐form crystals in the blend films was verified using X‐ray diffraction and an increase in crystallinity indexes using Fourier transformation infrared spectroscopy. Crystallization and melting temperatures and crystallinity of PLLA increased with decreasing cooling rate (CR) and showed higher values for the blends. Although PLLA crystallized during both cooling and heating, after incorporation of PEG and with CR = 2 °C min?1 its crystallization was completed during cooling. Increasingly distinct with CR, a small peak appeared on the lower temperature flank of the PLLA melting curve in the blends. A three‐dimensional nucleation process with increasing contribution from nuclei growth at higher CR was verified from Avrami analysis, whereas Kissinger's method showed that the diluent effect of 10 and 20 wt% PEG in PLLA decreased the effective energy barrier. During isothermal crystallization, crystallization half‐time increased with temperature (Tic) for the blends, decreased with PEG content and was lower than that of pure PLLA. In addition, the Avrami rate constants were significantly higher than those of pure PLLA, at the lower Tic. Different crystal morphologies in the PLLA phase were formed, melting in a broader and slightly higher Tm range than pure PLLA. The crystallization activation energy of PLLA decreased by 56% after the addition of 10 wt% PEG, increasing though with PEG content. Finally, PEG/PLLA blends presented improved flexibility and hydrophilicity. © 2019 Society of Chemical Industry  相似文献   

3.
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry  相似文献   

4.
Binary blend membranes of biodegradable poly(l-lactide) (PLLA) with poly(tetramethylene adipate-co-terephthalate) (PTAT) copolymer were prepared by solution casting via air evaporation. The miscibility of PLLA/PTAT blends was studied by dynamic mechanical analysis (DMA) and thermal mechanical analysis (TMA) in a tensile mode. Differential scanning calorimetry (DSC) measurement was carried out. The surface microstructure and tensile properties of the blend membranes were examined using atomic force microscopy (AFM) and tensile tester. It was concluded that PLLA/PTAT blends should be partially miscible for all ranges of compositions. Higher roughness and porosity were observed for the blend containing 50% PTAT, suggesting more phase separation occurred. The DSC analysis showed that the fusion enthalpy and crystallinity (Xc) of the PLLA-rich phase decreased with increasing PTAT content. Solidification process strongly suggested that the crystallization rate was accelerated by blending with 25% PTAT content, which served as the nucleation agent. Furthermore, the crystallization rate coefficient (CRC) depended on the blending miscibility and cooling rate in the non-isothermal crystallization process. Besides, PTAT addition could be proved to enhance the thermal stability and elongation of resulting blend membranes, even superior to those properties of poly(lactic acid-co-glycolic acid) (PLGA).  相似文献   

5.
Blend films of poly(L ‐lactide) (PLLA) and poly(vinyl alcohol) (PVA) were obtained by evaporation of hexafluoroisopropanol solutions of both components. The component interaction, crystallization behavior, and miscibility of these blends were studied by solid‐state NMR and other conventional methods, such as Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC), and wide‐angle X‐ray diffraction (WAXD). The existence of two series of isolated and constant glass‐transition temperatures (Tg's) independent of the blend composition indicates that PLLA and PVA are immiscible in the amorphous region. However, the DSC data still demonstrates that some degree of compatibility related to blend composition exists in both PLLA/atactic‐PVA (a‐PVA) and PLLA/syndiotactic‐PVA (s‐PVA) blend systems. Furthermore, the formation of interpolymer hydrogen bonding in the amorphous region, which is regarded as the driving force leading to some degree of component compatibility in these immiscible systems, is confirmed by FTIR and further analyzed by 13C solid‐state NMR analyses, especially for the blends with low PLLA contents. Although the crystallization kinetics of one component (especially PVA) were affected by another component, WAXD measurement shows that these blends still possess two isolated crystalline PLLA and PVA phases other than the so‐called cocrystalline phase. 13C solid‐state NMR analysis excludes the interpolymer hydrogen bonding in the crystalline region. The mechanical properties (tensile strength and elongation at break) of blend films are consistent with the immiscible but somewhat compatible nature of these blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 762–772, 2001  相似文献   

6.
The miscibility and effect of physical aging on the crystallization behavior of poly(l ‐lactic acid) (PLLA)/poly(3‐hydroxybutyrate) (PHB) blends with a small amount of PHB (≤10 wt%) have been investigated using differential scanning calorimetry and Fourier transform infrared spectroscopy. It is found that the miscibility of PLLA/PHB blends with a very small percentage of PHB can be modulated by varying the molecular weight of the PHB. That is, a PLLA/PHB blend with low‐molecular‐weight PHB is miscible, whereas that with high‐molecular‐weight PHB is immiscible. It is found that physical aging at temperatures far below the glass transition temperature can promote the cold crystallization kinetics of PLLA in PLLA/PHB blends with high‐molecular‐weight PHB rather than in those with low‐molecular‐weight PHB. These findings suggest that the effect of physical aging on the crystallization behavior of the main component in a crystalline/crystalline blend with a small percentage of the second component is strongly dependent on the miscibility of the blend system. Enhanced chain mobility of PLLA in the interface region of PLLA matrix and PHB micro‐domains is proposed to explain the physical aging‐enhanced crystallization rate in immiscible PLLA/PHB blends with high‐molecular‐weight PHB. © 2013 Society of Chemical Industry  相似文献   

7.
Poly(L ‐lactic acid) (PLLA: Mw = 19.4 × 104)/poly(ethylene glycol) (PEG: Mw = 400) blend films were formed by use of a solvent‐cast technique. The properties and structures of these blend films were investigated. The Young's modulus of the PLLA decreased from 1220 to 417 MPa with the addition of PEG 5 wt %, but the elongation at break increased from 19 to 126%. The melting point of PLLA linearly decreased with increases in the PEG content (i.e., pure PLLA: 172.5°C, PLLA/PEG = 60/40 wt %: 159.6°C). The PEG 20 wt % blend film had a porous structure. The pore diameter was 3–5 μm. The alkali hydrolysis rate of this blend film was accelerated due to its porous structure. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 965–970, 2004  相似文献   

8.
聚乳酸/聚乙二醇共混物的结晶与降解行为   总被引:1,自引:0,他引:1       下载免费PDF全文
针对聚乳酸(PLLA)亲水性差、降解周期长的问题,利用与亲水性高分子聚乙二醇(PEG)共混的方法对其进行改性。采用转矩流变仪制备了不同组成的PLLA/PEG共混物颗粒,系统研究了PLLA/PEG共混物的结晶和熔融、亲水性和在酸碱介质中的降解行为。结果表明,PEG的加入增强了共混物中PLLA的结晶能力,提高了PLLA在降温过程中的熔融结晶温度。PLLA/PEG共混物在等温结晶中表现出比纯PLLA更快的结晶速度。通过改变PLLA/PEG共混物的组成,可调控材料的表面亲水性和降解速率。随着PEG含量的增多,PLLA/PEG共混物的表面接触角降低。PLLA与PLLA/PEG共混物均可在水溶液中降解,共混物的降解速率高于纯PLLA,随着PEG含量的升高和降解液中酸碱浓度的提高,PLLA/PEG共混物的降解速率加快。  相似文献   

9.
Yun Hu  Jianming Zhang  Isao Noda 《Polymer》2008,49(19):4204-4210
The miscibility, crystallization and subsequent melting behavior in binary biodegradable polymer blends of poly(l-lactic acid) (PLLA) and low molecular weight poly(3-hydroxybutyrate) (PHB) have been investigated by differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and wide-angle X-ray diffraction (WAXD). DSC analysis results indicted that PLLA showed no miscibility with high molecular weight PHB (Mw = 650,000 g mol−1) in the 80/20, 60/40, 40/60, 20/80 composition range of the PHB/PLLA blends. On the other hand, it showed some limited miscibility with low molecular weight PHB (Mw = 5000 g mol−1) when the PHB content was below 25%, as evidenced by small changes in the glass transition temperature of PLLA. The partial miscibility was further supported by changes of cold-crystallization behavior of PLLA in the blends. During the nonisothermal crystallization, it was found that the addition of a small amount of PHB up to 30% made the cold-crystallization of PLLA occur in the lower temperature. Meanwhile, the crystallization of PHB and PLLA was observed in the heating process by monitoring characteristic IR bands of each component for the low molecular weight PHB/PLLA 20/80 and 30/70 blends. The temperature-dependent IR and WAXD results also revealed that for PLLA component crystallization, the disorder (α′) phase of PLLA was produced, and that the α′ phase changed to the order (α) phase just prior to the melting point.  相似文献   

10.
Tomoko Shirahase 《Polymer》2006,47(13):4839-4844
Poly(l-lactide) (PLLA) was melt blended with poly(methyl methacrylate) (PMMA) using a two-roll mill. The miscibility and hydrolytic degradation of the blend films were characterized. It was found that PLLA/PMMA blend has high miscibility in the amorphous state because only single Tg was observed in the DSC and DMA measurements. In alkaline solution, the hydrolytic degradation rate of the blends whose PMMA content is higher than 30 wt% was decelerated while the rate of the blends whose PMMA content is lower than 30 wt% was accelerated. That is, the hydrolytic degradation rate of the blends could be widely controlled by PMMA content in the blend. It was also found that only PLLA was hydrolyzed and eluted into alkaline solution, while PMMA remained during alkaline hydrolysis.  相似文献   

11.
Poly(l ‐lactic acid) (PLLA) was blended with a series of four‐armed poly(? ‐caprolactone)‐block ‐poly(d ‐lactic acid) (4a‐PCL‐b ‐PDLA) copolymers in order to improve its crystallization rate and mechanical properties. It is found that a higher content of 4a‐PCL‐b ‐PDLA copolymer or longer PDLA block in the copolymer lead to faster crystallization of the blend, which is attributed to the formation of stereocomplex crystallites between PLLA matrix and PDLA blocks of the 4a‐PCL‐b ‐PDLA copolymers. Meanwhile, the PDLA block can improve the miscibility between flexible PCL phase and PLLA phase, which is beneficial for improving mechanical properties. The tensile results indicate that the 10% 4a‐PCL5kb ‐PDLA5k/PLLA blend has the largest elongation at break of about 72% because of the synergistic effects of stereocomplexation between enantiomeric PLAs, multi‐arm structure and plasticization of PCL blocks. It is concluded that well‐controlled composition and content of 4a‐PCL‐b ‐PDLA copolymer in PLLA blends can significantly improve the crystallization rate and mechanical properties of the PLLA matrix. © 2017 Society of Chemical Industry  相似文献   

12.
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by melt mixing. The miscibility, crystallization behavior, mechanical properties and hydrophilicity of the ternary blends have been investigated. The high compatibility of PVDF/PMMA/PVP ternary blends is induced by strong interactions between the carbonyl groups of the PMMA/PVP blend and the CF2 or CH2 group of PVDF. According to the Fourier transform infrared and wide‐angle X‐ray difffraction analyses, the introduction of PMMA does not change the crystalline state (i.e. α phase) of PVDF. By contrast, the addition of PVP in the blends favors the transformation of the crystalline state of PVDF from non‐polar α to polar β phase. Moreover, the crystallinity of the PVDF/PMMA/PVP ternary blends also decreases compared with neat PVDF. Through mechanical analysis, the elongation at break of the blends significantly increases to more than six times that of neat PVDF. This confirms that the addition of the PMMA/PVP blend enhances the toughness of PVDF. Besides, the hydrophilicity of PVDF is remarkably improved by blending with PMMA/PVP; in particular when the content of PVP reaches 30 wt%, the water contact angle displays its lowest value which decreased from 91.4° to 51.0°. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
Blends of amorphous and crystalline polylactides (PDLA and PLLA) with poly(methyl methacrylate) (PMMA) and poly(methyl acrylate) (PMA) have been prepared. Thermal behaviour and miscibility of these blends along the entire composition interval were studied by differential scanning calorimetry (d.s.c.). The results were compared with those obtained by dynamic mechanical analysis (DMTA). Only one Tg was found in PDLA/PMA and PDLA/PMMA blends, indicating a high degree of miscibility in both systems. Nevertheless, the PDLA/PMMA blend presented enlargements of the Tg width at high PMMA contents. In this case, additional evidence of complete miscibility was obtained by studying the evolution of the enthalpic recovery peaks which appear after different thermal annealing treatments. When the polylactide used was semicrystalline (PLLA), once the thermal history of the blends had been destroyed, crystallization of PLLA was disturbed in both blends PLLA/PMMA and PLLA/PMA, but in a rather different fashion: in the first case crystallization was almost prevented while in the second one it was favoured. This behaviour was explained in terms of the effect of the higher stiffness as indicated by the value of Tg for PMMA compared to that for PMA.  相似文献   

14.
We have investigated the enhancement in miscibility, upon addition of bisphenol A (BPA) of immiscible binary biodegradable blends of poly(ε‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA). That BPA is miscible with both PCL and PLLA was proven by the single value of Tg observed by differential scanning calorimetry (DSC) analyses over the entire range of compositions. At various compositions and temperatures, Fourier transform infrared spectroscopy confirmed that intermolecular hydrogen bonding existed between the hydroxyl group of BPA and the carbonyl groups of PCL and PLLA. The addition of BPA enhances the miscibility of the immiscible PCL/PLLA binary blend and transforms it into a miscible blend at room temperature when a sufficient quantity of the BPA is present. In addition, optical microscopy (OM) measurements of the phase morphologies of ternary BPA/PCL/PLLA blends at different temperatures indicated an upper critical solution temperature (UCST) phase diagram, since the ΔK effect became smaller at higher temperature (200°C) than at room temperature. An analysis of infrared spectra recorded at different temperatures correlated well with the OM analyses. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1146–1161, 2006  相似文献   

15.
Jia-Hsien Lin 《Polymer》2006,47(19):6826-6835
Crystalline/crystalline blend systems of poly(ethylene oxide) (PEO) and a homologous series of polyesters, from poly(ethylene adipate) to poly(hexamethylene sebacate), of different CH2/CO ratios (from 3.0 to 7.0) were examined. Correlation between interactions, miscibility, and spherulite growth rate was discussed. Owing to proximity of blend constituents' Tg's, the miscibility in the crystalline/crystalline blends was mainly justified by thermodynamic and kinetic evidence extracted from characterization of the PEO crystals grown from mixtures of PEO and polyesters at melt state. By overcoming experimental difficulty in assessing the phase behavior of two crystalline polymers with closely spaced Tg's, this work has further extended the range of polyesters that can be miscible with PEO. The interaction parameters (χ12) for miscible blends of PEO with polyesters [poly(ethylene adipate), poly(propylene adipate), poly(butylene adipate), and poly(ethylene azelate) with CH2/CO = 3.0-4.5] are all negative but the values vary with the polyester structures, with a maximum for the blend of PEO/poly(propylene adipate) (CH2/CO = 3.5). The values of interactions are apparently dependent on the structures of the polyester constituent in the blends; interaction strength for the miscible PEO/polyester systems correlate in the same trend with the PEO crystal growth rates in the blends.  相似文献   

16.
Reactive compatibilization was used to control and stabilize 20–30wt% poly(dimethylsioxane) (PDMS) dispersions in nylon 6 (PA) and poly(styrene) (PS), respectively. The effect of the type of reation (amine (NH2)/anhydride (An), NH2/ epoxy(E) and carboxylic acid (COOH)/E) on the morphology was studied with electron microscopy. PS and PDMS have mutual solvents thus it was possible to use gel permeation chromatography (GPC) to determine the concentration of block copolymer in PS/PDMS blends. Reactive blending of PA6 with difunctional PDMS‐(AN)2 did not decrease the PDMS particle size compared to the non‐reactive blend (~10μm). Particle size decreaeased significantly to about 0.5 μm when PA6 was blended with a PDMS containing about 4 random An groups along the chain. For the PS/PDMS blends, GPC revealed that the NH2/An reaction formed about 3% block copolymer and produced stable PDMS particles ~ 0.4 μm. No reaction was detected for the PS‐NH2/PDMS‐E blend and the morphology was coarse and unstable. Also, PS‐NH2/PDMS‐An reactivity was lower compared to other systems such as PS/ poly (isoprene) and PS/poly(methaacrylte) using the same reaction. This was attributed to the relatively thinner PS/PDMS interface dueto the high PS/PDMs immiscibility.  相似文献   

17.
Differential scanning calorimetry (DSC) of triple blends of high molecular weight poly(N‐vinyl pyrrolidone) (PVP) with oligomeric poly(ethylene glycol) (PEG) of molecular weight 400 g/mol and copolymer of methacrylic acid with ethylacrylate (PMAA‐co‐EA) demonstrates partial miscibility of polymer components, which is due to formation of interpolymer hydrogen bonds (reversible crosslinking). Because both PVP and PMAA‐co‐EA are amorphous polymers and PEG exhibits crystalline phase, the DSC examination is informative on the phase state of PEG in the triple blends and reveals a strong competition between PEG and PMAA‐co‐EA for interaction with PVP. The hydrogen bonding in the triple PVP–PEG–PMAA‐co‐EA blends has been established with FTIR Spectroscopy. To evaluate the relative strengths of hydrogen bonded complexes in PVP–PEG–PMAA‐co‐EA blends, quantum‐chemical calculations were performed. According to this analysis, the energy of H‐bonding has been found to diminish in the order: PVP–PMAA‐co‐EA–PEG(OH) > PVP–(OH)PEG(OH)–PVP > PVP–H2O > PVP–PEG(OH) > PMAA‐co‐EA–PEG(? O? ) > PVP–PMAA‐co‐EA > PMAA‐co‐EA–PEG(OH). Thus, most stable complexes are the triple PVP–PMAA‐co‐EA–PEG(OH) complex and the complex wherein comparatively short PEG chains form simultaneously two hydrogen bonds to PVP carbonyl groups through both terminal OH‐groups, acting as H‐bonding crosslinks between longer PVP backbones. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
The miscibility of poly(vinylalcohol-co-ethylene) (PEVA) with poly(ethylene-alt-maleic anhydride) (PEMAH) blends was investigated over a wide range of compositions by viscosimetry and DSC analyses using Krigbaum–Wall and Kwei approaches. The results revealed that the blends were completely miscible in all proportions due to the specific interactions between the hydroxyl groups of PEVA and the carbonyl groups of PEMAH. From Nishi equation, the interaction parameter of Flory was found to be −0.89. The nonisothermal crystallization behavior and kinetics of this system were also investigated and compared with those of the pure PEVA. There were strong dependencies of the degree of crystallinity (XT), peak crystallization temperature (Tp), half time of crystallization (t1/2), and Ozawa exponent (m) on PEMAH content and cooling rate. The crystallization activation energy (Ec) that was calculated from Kissinger model increased with increasing PEMAH composition in the blend. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Blends of two biodegradable and semicrystalline polymers, poly(L ‐lactic acid) (PLLA) and poly(butylene succinate‐co‐adipate) (PBSA), were prepared by solvent casting in different compositions. The miscibility, morphology, and thermal behavior of the blends were investigated using differential scanning calorimetry and optical microscopy. PLLA was found to be immiscible with PBSA as evidenced by two independent glass transitions and biphasic melt. Nonisothermal crystallization measurements showed that fractionated crystallization behavior occurred when PBSA was dispersed as droplets, evidenced by multiple crystallization peaks at different supercooling levels. Crystallization and morphology of the blends were also investigated through two‐step isothermal crystallization. For blends where PLLA was the major component, different content of PBSA did not make a significant difference in the crystallization mechanism and rate of PLLA. For blends where PBSA was the major component, the crystallization rate of PBSA decreased with increasing PLLA content, while the crystallization mechanism did not change. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

20.
BACKGROUND: The phase behavior of blends of semicrystalline aryl polyesters with long methylene segments (? (CH2)n? with n = 5 or 7) in the repeat units has not been much studied. Thus, crystalline/crystalline blends comprising monomorphic poly(pentamethylene terephthalate) (PPT) and polymorphic poly(heptamethylene terephthalate) (PHepT) were prepared and the crystal growth kinetics, polymorphism behavior and miscibility in this blend system were probed using polarized‐light optical microscopy, differential scanning calorimetry and wide‐angle X‐ray diffraction. RESULTS: The PPT/PHepT blends of all compositions were first proven to be miscible in the melt state or quenched amorphous phase, whose interaction strength was determined (χ12 = ? 0.35), showing favorable interactions and phase homogeneity. Although the spherulites of neat PPT and PHepT could exhibit ring bands at different crystallization temperature (Tc) ranges (100–110 and 50–65 °C, respectively), the spherulites of PPT/PHepT (50/50) blend became ringless in the range 50–110 °C. Growth analysis and polymorphic behavior in the crystalline phases of the blends provided extra evidence for the miscibility between these two crystalline polymers. Spherulitic growth rates of PPT in the PPT/PHepT blends were significantly reduced in comparison with those of neat PPT. In addition, miscible blending of a small fraction of monomorphic PPT (20 wt%) with polymorphic PHepT altered the crystal stability and led to the originally polymorphic PHepT exhibiting only the β‐crystal form when melt‐crystallized at all values of Tc. CONCLUSION: The highly intimate mixing in polymer chains of crystalline PPT and PHepT causes significant disruption in ring‐band patterns and reduction in crystallization rates of PPT as well as alteration in the polymorphic behavior of PHepT. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号