首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, cleaner production of N-methylglycine (NMG), N,N-dimethylglycine (DMG), and N,N,N-trimethylglycine (TMG) with similar structures but different methylate groups was performed using bipolar membrane electrodialysis (BMED). The effects of the feed mass concentration and current density on the separation performance were intensively analysed in terms of the molecular size, molecular structure, ion concentration, and interaction between amino acids and membranes. The results indicated that the optimal recovery performance was achieved at a current density of 200 A/m2 and feed mass concentration of 6%. Under the optimal conditions, the energy consumption and current efficiencies were 2.3 kWh/kg and 78% for NMG, 2.49 kWh/kg and 69.5% for DMG, and 3.52 kWh/kg and 39.6% for TMG, respectively. It was speculated a competition for water splitting occurs between the bipolar membranes and anion exchange membranes when BMED is used for the separation and purification of large-sized bioproducts.  相似文献   

2.
《分离科学与技术》2012,47(18):3115-3127
ABSTRACT

In this paper, the modeling and the optimization of the removal efficiency of ketoprofen (KTP) by the electrocoagulation process were studied. The central composite design experiments (CCD) method was used to study the main effects and the interaction effects between operational parameters and to optimize the value of each parameter. According to the regression equation obtained, the current density appears to be one of the most important parameters (b2 = +22.11) controlling the removal efficiency of KTP. The positive sign of b2 coefficient suggests that the increase of current density increases the yield of removal. The second signi?cant parameter with a negative effect was the initial KTP concentration (b3 = ?16.27). This result suggests that the removal efficiency was inversely proportional to the initial concentration. In addition, according to the model, the most influencing interactions were pH-current density, pH-initial concentration, and current density-initial concentration. The model obtained by CCD led to the following optimal conditions for KTP removal e?ciency (96.70%): pH = 7, i = 24.04 mA cm?2, and C0 = 5 mg L?1.  相似文献   

3.
BACKGROUND: Rhamnolipid is a biosurfactant that finds wide applications in pharmaceuticals and beauty products. Pseudomonas aeruginosa is a producer of rhamnolipids, and the process can be implemented under laboratory‐scale conditions. Rhamnolipid concentration depends on medium composition namely, carbon source concentration, nitrogen source concentration, phosphate content and iron content. In this work, existing data7 were used to develop an artificial neural network‐based response surface model (ANN RSM) for rhamnolipid production by pseudomonas aeruginosa AT10. This ANN RSM model is integrated with non‐dominated sorting differential evolution (DE) to identify the optimum medium composition for this process. RESULTS: Different strategies for optimization of culture medium composition for this process were evaluated, and the best determined to be an ANN model combined with DE involving a combination of Naïve and Slow and ε‐constrained techniques. The optimal culture medium is determined to have carbon source concentration of 49.86 g dm?3, nitrogen source concentration of 4.99 g dm?3, phosphate content of 1.42 g dm?3, and iron content of 17.12 g dm?3. The maximum rhamnolipid activity was found to be 18.07 g dm?3, which compares favorably with that previously reported (18.66 g dm?3), and is in fact closer to the experimentally determined value of 16.50 g dm?3. CONCLUSION: This method has distinct advantages over methods using statistical regression models, and can be used for optimization of other multi‐objective biosurfactant production processes. © 2012 Society of Chemical Industry  相似文献   

4.
采用双极膜电渗析(bipolar membrane electrodialysis,BMED)将麦草畏生产废水中的NaCl转化为HCl和NaOH回用于农药生产,实现农药废水的资源化利用。首先进行了BMED法处理单组分NaCl溶液体系的110 min间歇运行实验来探索最优操作条件,结果表明,当NaCl初始浓度为160 g/L,电流密度为70 mA/cm2,初始酸碱室浓度为0.075 mol/L时,产物HCl、NaOH的浓度能分别达到1.98 mol/L和 2.06 mol/L,且此时的电流效率较高,达到42.74%。然后考虑实际废水的COD指标主要是甲醇造成的,所以用含不同浓度甲醇的NaCl溶液模拟实际农药废水,实验结束后在酸、碱隔室中检测到少量的甲醇,表明其在BMED运行过程中存在一定程度的渗透,但未对膜堆性能造成明显影响。最后用BMED处理经过预处理后含有机物的麦草畏生产废水,发现在操作时间内膜堆性能与处理高浓度单组分NaCl溶液情况类似,证实BMED法处理麦草畏生产废水并实现资源化利用的可行性。  相似文献   

5.
The present study demonstrated the applicability of the electrocoagulation method for the removal of reactive dye, Remazol Red 3B, in a batch study. Iron electrode material was used as a sacrificial electrode in monopolar parallel mode in this study. The effects of the initial pH, current density, conductivity, initial concentration of dye and electrolysis time on the removal of Remazol Red 3B were investigated to determine optimum operating conditions. High decolorisation efficiency (>99%) for Remazol Red 3B dye solution was obtained with optimal value of process parameters, such as 15 mA cm?2 of current density, 10 min of electrolysis time, pH 6 and 500 mg l?1 dye concentration. The energy consumption, electrode consumption and operating costs under optimum operating conditions were calculated as 3.3 kW h kg dye?1, 1.2 kg Fe kg dye?1 and 0.6 € m?3, respectively.  相似文献   

6.
Enzymatic extraction of oil from Kalahari melon seeds was investigated and evaluated by response surface methodology (RSM). Two commercial protease enzyme products were used separately: Neutrase® 0.8 L and Flavourzyme® 1000 L from Novozymes (Bagsvaerd, Denmark). RSM was applied to model and optimize the reaction conditions namely concentration of enzyme (20–50 g kg?1 of seed mass), initial pH of mixture (pH 5–9), incubation temperature (40–60 °C), and incubation time (12–36 h). Well fitting models were successfully established for both enzymes: Neutrase 0.8 L (R 2 = 0.9410) and Flavourzyme 1000 L (R 2 = 0.9574) through multiple linear regressions with backward elimination. Incubation time was the most significant reaction factor on oil yield for both enzymes. The optimal conditions for Neutrase 0.8 L were: an enzyme concentration of 25 g kg?1, an initial pH of 7, a temperature at 58 °C and an incubation time of 31 h with constant shaking at 100 rpm. Centrifuging the mixture at 8,000g for 20 min separated the oil with a recovery of 68.58 ± 3.39%. The optimal conditions for Flavourzyme 1000 L were enzyme concentration of 21 g kg?1, initial pH of 6, temperature at 50 °C and incubation time of 36 h. These optimum conditions yielded a 71.55 ± 1.28% oil recovery.  相似文献   

7.
In this article, response surface methodology (RSM) was used to obtain optimum conditions for removal of p-nitrophenol (PNP) by UV/H2O2 process using spinning disk photoreactor (SDP). For this purpose, the effect of five independent variables, the initial concentration of PNP, the initial concentration of H2O2, pH, solution volume, and irradiation time on the PNP removal percent, was investigated. Central composite design, one of the response surface techniques used for process optimization. The results showed a good agreement between the RSM predicted and experimental data with “R2” and “Adjusted R2” of 0.9692 and 0.9480, respectively. In addition, “Predicted R2” of 0.8909 is in reasonable agreement with “Adjusted R2” of 0.9488. At optimal conditions, that is, PNP concentration of 20.78?mg L?1, H2O2 concentration of 1355.83?mg L?1, solution volume of 566.08?mL, irradiation time of 12.30?min, and pH of 4.59 the removal percent predicted by RSM is 100% which has good correspondence with its experimental value (98.67%).  相似文献   

8.
A cadmium biosorption process was optimized by varying three independent variables pH (4.5–7.5), initial cadmium ion concentration (10–30 mg L?1), and Yarrowia lipolytica dosage (3–5 g L?1) by using a Doehlert experimental design (DD) involving response surface methodology (RSM). For the maximum biosorption of cadmium ion in an aqueous solution by Y. lipolytica, a total of fifteen experimental runs were set and the experimental data fitted to the empirical second-order polynomial model of a suitable degree. The analysis of variance of the quadratic model demonstrates that the model was highly significant. Three-dimensional plots demonstrate relationships between the cadmium ion uptake with the paired variables (when other variable was kept at its optimal level), describing the behavior of biosorption system in a batch process. The model showed that cadmium uptake in aqueous solution was affected by all the three variables studied. The optimum values of the variables were found to be 6.43, 17.56 mg L?1 and 3.63 g L?1 for pH, initial cadmium ion concentration and biomass dosage, respectively, at a contact time of 40 min. At these optimal conditions, the maximum percentage biosorption of cadmium was predicted to be 48.89. The experimental values were in good agreement with predicted values and the correlation coefficient was found to be 0.9985. It showed that both monolayer adsorption and intra-particle diffusion mechanisms were effective in the cadmium biosorption process. Therefore, it is apparent that the DD involving RSM not only gives valuable information on interactions between the variables but also leads to identification of feasible optimum values of the studied variables.  相似文献   

9.
BACKGROUND: Food waste generally has a high starch content and is rich in nutritional compounds, including lipids and proteins. It therefore represents a potential renewable resource. In this study, dining‐hall food waste was used as a substrate for lactic acid production, and response surface methodology was employed to optimise the fermentation conditions. RESULTS: Lactic acid biosynthesis was significantly affected by the interaction of protease and temperature. Protease, temperature and CaCO3 had significant linear effects on lactic acid production, while α‐amylase and yeast extract had insignificant effects. The optimal conditions were found to be an α‐amylase activity of 13.86 U g?1 dried food waste, a protease activity of 2.12 U g?1 dried food waste, a temperature of 29.31 °C and a CaCO3 concentration of 62.67 g L?1, which resulted in a maximum lactic acid concentration of 98.51 g L?1 (88.75% yield). An increase in inoculum size would be appropriate for accelerating the depletion of initial soluble carbohydrate to enhance the efficiency of α‐amylase in dining‐hall food waste fermentation. CONCLUSION: A suitable regression model for lactic acid production was developed based on the experimental results. Dining‐hall food waste was found to be a good substrate for lactic acid fermentation with high product yield and without nutrient supplementation. Copyright © 2008 Society of Chemical Industry  相似文献   

10.
BACKGROUND: TiO2 heterogeneous photocatalysis should be optimized before application for the removal of pollutants in treated wastewaters. The response surface methodology (RSM) and artificial neural networks (ANNs) were applied to model and optimize the photocatalytic degradation of total phenolic (TPh) compounds in real secondary and tertiary treated municipal wastewaters. RESULTS: RSM was developed by considering a central composite design (CCD) with three input variables, i.e. TiO2 mass, initial concentration of TPh and irradiation intensity. At the same time a feed‐forward multilayered perceptron ANN trained using back propagation algorithms was used and compared with RSM. Under the optimum conditions established in experiments ([TPh]0 = 3 mg L?1; [TiO2] = 300 mg L?1; I = 600 W m?2) the degradation for both TPh and total organic carbon (TOC) followed pseudo‐first‐order kinetic model. Complete degradation of TPh took place in 180 min and reduction of TOC reached 80%. A significant abatement of the overall toxicity was accomplished as revealed by Microtox bioassay. CONCLUSIONS: It was found that the variables considered have important effects on TPh removal efficiency. The results demonstrated that the use of experimental design strategy is indispensable for successful investigation and adequate modeling of the process and that ANNs gave better modelling capability than RSM. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
BACKGROUND: The combination of electrochemical oxidation using a Ti/RuO2? IrO2 anode with hydrogen peroxide has been used for the degradation of Crystal Violet. The effect of major parameters such as initial pH, hydrogen peroxide concentration, current density, electrolyte concentration and hydroxyl radical scavenger on the decolorisation was investigated. RESULTS: The decolorisation rate increased with initial pH and hydrogen peroxide concentration, but decreased with electrolyte and radical scavenger concentration. The decolorisation rate increased with current density, but the increase became insignificant after current density exceeded 47.6 mA cm?2. On the other hand, hydrogen peroxide decomposition rate increased with initial pH and current density, but decreased with electrolyte and radical scavenger concentration. The amount of hydrogen peroxide decomposed during 30 min reaction increased linearly with hydrogen peroxide dosage. The main intermediates were separated and identified by gas chromatography–mass spectrometry (GC–MS) technique and a plausible degradation pathway of Crystal Violet was proposed. At neutral pH, the electrochemical process in the presence of hydrogen peroxide was more efficient than that in the presence of Fenton's reagent (electro‐Fenton process). CONCLUSION: The anodic oxidation process could decolorise Crystal Violet effectively when hydrogen peroxide was present. Almost complete decolorisation was achieved after 30 min reaction under the conditions 2.43 mmol L?1 hydrogen peroxide, 47.6 mA cm?2 current density and pH0 7, while 62% COD removal efficiency was obtained when the reaction time was prolonged to 90 min. Copyright © 2010 Society of Chemical Industry  相似文献   

12.
In this study, bipolar membrane electrodialysis (BMED) was implemented for cleaner production of L-10-camphorsulfonic acid (L-CSA) to lower the environmental impact. Under the current density of 300–400 A/m2 and feed salt concentration of 6–10 wt.%, the energy consumption and current efficiency were 2.24–2.70 kWh/kg and 20.89–29.5%, respectively. Positron annihilation lifetime spectroscopy, x-ray photoelectron spectroscopy with ion beam etching, and other characterizations were used to elucidate the transport behaviors of large-sized anions across the membranes. It was speculated that the large-sized camphor sulfonate ions were more likely to deposit on the surface of the anion-exchange membrane to form a deposition layer under a direct current electric field. The appearance of water splitting at this deposition layer would offset the water dissociation in the bipolar membrane. Nevertheless, the successful commissioning of industrial-scale stack proved the feasibility and sustainability of BMED technique for a closed loop L-CSA production.  相似文献   

13.
The electrochemical conversion of highly concentrated synthetic phenolic wastewater was studied on carbon electrodes in a batch electrochemical reactor. The effects of reaction temperature, electrolyte concentration, current density and initial phenol concentration on phenol conversion were elucidated. The wastewater was synthetically prepared and used in reactions carried out generally at 25 °C with an initial phenol concentration of 3500 mg dm?3. Although current density increased, phenol conversion% and initial phenol conversion rate did not increase correspondingly above 35 °C and an electrolyte concentration of 90 g dm?3. As the voltage values applied were increased, the increasing current density resulted in fast phenol conversion. Kinetic investigations denoted that overall phenol destruction kinetics was of zero order with an activation energy of 10.9 kJ mol?1. Under appropriate conditions, phenol was completely converted within 15 min for an initial phenol concentration of 98 mg dm?3 while 8 h was required to gain 95% conversion using 4698 mg dm?3. Solid polymeric materials were produced at initial phenol concentrations above 500 mg dm?3 using the appropriate current density. In the reaction medium, only mono‐, di‐ and tri‐substituted chlorophenols were formed and 100% of all species were either oxidised or contributed to the formation of a polymeric structure. Almost all of the phenol loaded to the reactor was converted into non‐passivating polymeric products, denoting a safe and easy method for the separation of phenol. © 2001 Society of Chemical Industry  相似文献   

14.
BACKGROUND: Hexyl laurate has been applied widely in cosmetic industries and is synthesized by chemical methods with problems of cost, environmental pollution, and by‐products. In this study, Lipozyme® IM77 (from Rhizomucor miehei) was used to catalyze the direct‐esterification of hexanol and lauric acid in a solvent‐free system by utilizing a continuous packed‐bed reactor, wherein the aforementioned difficulties could be overcome. Response surface methodology (RSM) and three‐level‐three‐factor Box‐Behnken design were employed to evaluate the effects of synthesis parameters, such as reaction temperature (45–65 °C), mixture flow rate (0.25–0.75 mL min?1) and concentration of lauric acid (100–300 mmol L?1) on the production rate (µmol min?1) of hexyl laurate by direct esterification. RESULTS: The production rate was affected significantly by the mixture flow rate and lauric acid concentration. On the basis of ridge‐max analysis, the optimum synthesis conditions for hexyl laurate were as follows: 81.58 ± 1.76 µmol min?1 at 55 °C, 0.5 mL min?1 flow rate and 0.3 mol L?1 lauric acid. CONCLUSION: The lipase‐catalyzed synthesis of hexyl laurate by Lipozyme® IM‐77 in a continuous packed‐bed bioreactor and solvent‐free system was successfully developed; optimization of the reaction parameters was obtained by Box–Behnken design and RSM. Copyright © 2008 Society of Chemical Industry  相似文献   

15.
2-Amino-1-propanol (AMP) is a key intermediate compound in the production of antibiotics, with increasing demand in industry. In this study, we propose a newly designed bipolar membrane electrodialysis (BMED) system with a novel three-compartment configuration for the processing of AMP from the AMP sulphate solution. The operational parameters were investigated for optimizing the performance of this novel BMED stack, compared to the traditional two-compartment BMED stack in the pilot scale experiment. The experimental results indicate that this novel type of BMED stack offers a better performance for AMP processing than the conventional two-compartment BMED stack. The optimum performance was observed at the current density ranging from 40 to 60 mA cm−2 and a spacer thickness of 0.70 mm. The corresponding current efficiency and energy consumption reached up to 53.4% and 3.135 kWh kg−1, respectively. The two-compartment BMED stack was found to have a low current efficiency (39.8%) and a high energy consumption (3.864 kWh kg−1). Pilot-scale experiments for an industrial application of this novel BMED stack have been applied, demonstrating that the BMED process is feasible and economically alternative for AMP purification in the industry.  相似文献   

16.
Benzoic acid containing synthetic solution was pretreated by acid precipitation at various pH (1-3) and temperature (15-60 °C). Pre-treated solution was further treated by electrocoagulation (EC) and electrochemical Fenton (EF) processes using iron anode and graphite cathode. Optimization of independent operating parameters, namely, initial pH: (3-11), current density (A/m2): (15.24-76.21), electrolyte concentration (mol/L): (0.03-0.07) and electrolysis time (min): (15-95) for EC process and pH: (1-5), current density (A/m2): (15.24-76.21), H2O2 concentration (mg/L): (100-500) and electrolysis time (min): (15-95) for EF process, was performed using central composite design (CCD) in response surface methodology (RSM). Maximum removal efficiencies of BA- 76.83%, 88.50%; chemical oxygen demand (COD) - 69.23%, 82.21% and energy consumption (kWh/kg COD removed) - 30.86, 21.15 were achieved by EC and EF processes, respectively, at optimum operating conditions. It was found that EF process is more efficient than EC process based on removal of BA and COD with lower energy consumption. The sludge obtained after EC and EF treatments was analyzed by XRD, FTIR, DTA/TGA and SEM/EDX techniques.  相似文献   

17.
《分离科学与技术》2012,47(2):272-282
A comparative study of electrocoagulation and electrooxidation processes for the degradation of ellagic acid from aqueous solution was carried out. For the electrocoagulation process, metallic iron was used as electrodes whereas graphite and RuO2/IrO2/TaO2 coated titanium electrodes were used for the electrooxidation processes. The effect of the process variables such as initial pH, concentration of the supporting electrolyte, applied current density, electrolysis time, and anode materials on COD removal were systematically examined and discussed. Maximum COD removal of 93% was obtained at optimum conditions by electrocoagultion using an iron electrode. The ellagic acid was degraded completely by electrooxidation using graphite electrodes under the optimum conditions. During electrooxidation, the chloride ion concentration was estimated and the effect of the Cl? ion was discussed. The finding of this study shows that an increase in the applied current density, NaCl concentration, and electrolysis time enhanced the COD removal efficiency. The UV–Vis spectra analysis confirms the degradation of ellagic acid from aqueous solution.  相似文献   

18.
Bipolar membrane electrodialysis (BMED) has already been described for the preparation of quaternary ammonium hydroxide.However,compared to quaternary ammonium hydroxide,di-quaternary ammonium hydroxide has raised great interest due to its high thermal stability and good oriented performance.In order to synthesize N,N-hexamethylenebis(trimethyl ammonium hydroxide) (HM(OH)2) by EDBM,experiments designed by response surface methodology were carried out on the basis of single-factor experiments.The factors include current density,feed concentration and flow ratio of each compartment (feed compartment:base compartment:acid compartment:buffer compartment).The relationship between current efficiency and the above-mentioned three factors was quantitatively described by a multivariate regression model.According to the results,the feed concentration was the most significant factor and the optimum conditions were as follows:the current efficiency was up to 76.2% (the hydroxide conversion was over 98.6%),with a current density of 13.15 mA·cm-2,a feed concentration of 0.27 mol· L-1 and a flow ratio of 20 L· h-1∶26 L· h-1 ∶20 L· h-1∶20 L· h-1 for feed compartment,base compartment,acid compartment,and intermediate compartment,respectively.This study demonstrates the optimized parameters of manufacturing HM(OH)2 by direct splitting its halide for industrial application.  相似文献   

19.
BACKGROUND: Veratric acid (VA, 3,4‐dimethoxy‐benzoic acid) is representative of the polyphenolic type compounds present in olive mill wastewater (OMW). Given the bactericide factor, the inhibitor character and the anti bacteriological activity of this compound, traditional biological digestion cannot be applied and therefore new technologies, such as electrochemical oxidation using a boron‐doped diamond (BDD) anode have to be considered to avoid its accumulation in the environment. RESULTS: The electrochemical oxidation of aqueous solutions containing 1 mmol L?1 VA has been investigated using a filter‐press reactor with a BDD anode during galvanostatic electrolysis. The influence of several operating parameters, such as applied current density, temperature, flow‐rate and supporting electrolyte concentration and type has been investigated. The experimental results showed that under the experimental conditions used the oxidation of VA was under mass‐transfer control and VA was completely degraded by the reaction with hydroxyl radicals electrogenerated at the BDD surface. The chemical oxygen demand (COD) decay kinetic followed a pseudo‐first‐order reaction and the apparent rate constant increased with flow rate and temperature. Under optimal experimental conditions of flow‐rate (300 L h?1), temperature (35 °C) and current density (10 mA cm?2), 99.5% of COD was removed during 2 h electrolysis, with 16.4 kWh m?3 energy consumption. CONCLUSIONS: This study suggests that anodic oxidation with a BDD electrode is an excellent method for the treatment of effluents contaminated with VA and related polyphenols. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
This paper investigates the transport of Th(IV) ions in nitric acid media through a supported liquid membrane (SLM) impregnated with di‐2‐ethylhexylphosphoric acid (HDEHP) in kerosene using an electric field. The transport was carried out in a three compartment cell fitted with microporous cellulose nitrate (SLM) and cation exchange membrane (Nafion). The effect of different parameters including nitric acid concentration in the feed solution, HDEHP concentration in the membrane, and HCl concentration were studied. The optimal conditions for Th(IV) transport were 0.1 mol dm?3 HDEHP, 10?3 mol dm?3 HNO3 in the feed solution, 1 mol dm?3 HCl in compartment 2 and 1 mol dm?3 HCl in compartment 3 at 25 °C. Under the optimal conditions of Th(IV) transport the recovery factor after 90 min was 0.25 without applying an electrostatic field, compared with 0.9 when the electric field was applied. The effect of electric current on the flux of Th(IV) through the membrane was also studied. The flux increased as the current density increased from 10 to 30 mA cm?2 to reach a maximum value at 30 mA cm?2 (8 × 10?9 g eq cm?2 s?1). The transport percentages of 0.3 g dm?3 Th(IV) in the presence of 0.1 g dm?3 Eu(III) and 1 g dm?3 U(VI) were 66, 84 and 15%, respectively. The determined selectivities of U(VI)–Th(IV) and Th(IV)–Eu(III) were 0.12 and 0.3, respectively, after 90 min. Therefore, the order of selectivity of this system is Eu(III) > Th(IV) > U(VI). © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号