首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A flexible capacitive tactile sensor with adjustable characteristics, i.e., measurement range and sensitivity, has been developed. The proposed sensor is designed for large pressure measurement; therefore, polydimethylsiloxane (PDMS) material is selected as the material of the dielectric layer between the parallel plate electrodes of the sensor. Since the elasticity of the PDMS material can be adjusted by the mixing ratio of PDMS pre-polymer and curing agent during formation, sensors in different measurement ranges, i.e., 240–1,000 and 400–3,000 kPa, and corresponding sensitivities, i.e., 2.24 and 0.28 %/MPa, were respectively constructed and demonstrated. These measurement ranges are suitable for most of the biomechanical applications, especially for plantar pressure measurement. Moreover, because the output of the sensor, i.e., capacitance, is highly influenced by the dimension of the sensor structure, each sensor consists of four independent capacitance elements. The output of each sensor is averaged by four capacitances for single force measurement. This could improve the measurement accuracy in practical situation. Also, linearity of the measurement response could be enhanced and it was shown by the R-squared values in two measurement ranges, i.e., 0.9751 and 0.9881, respectively. The proposed sensor is flexible and miniaturized and has the potential to be applied to biomechanical applications.  相似文献   

2.
提出一种基于MEMS工艺的柔性压力传感器制备方法.采用MEMS工艺制备柔性压力传感器模板,结合纳米压印技术、射频磁控溅射技术和PDMS软光刻工艺在PDMS柔性基底上制备了具有"V"型阵列微结构的Ag薄膜平行板电极,基于碳纳米管(CNTs)/PDMS聚合物的压电容特性,制备出电容式柔性压力传感器.针对不同尺寸的压力传感器进行对比测试,本文制作的压力传感器的灵敏度能够达到3.98% kPa-1,具有良好的重复性,在智能穿戴和电子皮肤等方面有着广阔的应用前景.  相似文献   

3.
以碳纳米管(CNTs)作为导电填料,聚二甲基硅氧烷(PDMS)为基体材料,采用溶液法制备出CNTs/PDMS导电复合材料。研究了碳纳米管浓度对复合材料的电学特性和压阻特性的影响规律,得到碳纳米管在PDMS中的渗滤区域。通过复合材料的压力灵敏度优化碳纳米管浓度。以制备的复合材料为敏感材料,FPCB工艺加工的柔性基板为电极,设计制备了一种简单结构和工艺的柔性阵列压力传感器。用零电势法设计了阵列电阻读出电路与LabVIEW实现的上位机配合,实现信号读取和显示。最后通过一个应用实例表明,该柔性阵列压力传感器及信号处理系统可以实现压力分布与大小的实时监测,可为柔性阵列压力传感器设计与制备提供参考。  相似文献   

4.
设计制备出三明治结构的电容式柔性压力传感器,并对其性能进行研究.该传感器以银纳米线为电极材料,聚二甲基硅氧烷(PDMS)为柔性衬底,同时采用毛面玻璃和光面玻璃分别作为柔性衬底的制备模板,制备出微纳结构和平面结构的PDMS薄膜.然后采用喷涂法制备AgNWs/PDMS复合电极,以另外一层PDMS为介电层,将两电极面对面封装,得到电容式柔性压力传感器,最后系统研究了传感器的电极微纳结构对器件性能的影响.本文研究表明,具有微纳结构的AgNWs/PDMS复合薄膜传感器的灵敏度为1.0 kPa-1,而平面结构的AgNWs/PDMS复合薄膜传感器的灵敏度为0.6 kPa-1,由此可知具有微纳结构的柔性衬底能够显著提高器件的灵敏度.  相似文献   

5.
We developed meter-scale large-area capacitive fabric pressure sensors for floor sensors to monitor human position. In the fabric pressure sensor, two fabrics with stripe electrodes of conductive polymer-coated fibers woven into them were stacked vertically, and the capacitance changes between the top and bottom stripe electrodes were measured when pressure was applied. By using the die-coating of a conductive polymer and weaving the resultant fibers with meter-scale automatic looming machines, the 1 m × 1 m area with stripe electrodes at a 20 cm pitch was constructed. The pressure sensitivity, which depends on the number of the sensor fibers forming the stripe electrodes, was characterized and optimized to increase output capacitance change. The stripe electrodes with five sensor fibers were found to exhibit a capacitance change of 1.37 pF when pushed with the average foot pressure (i.e., 2.6 N/cm2), which is large enough to detect with conventional capacitance measurement circuits. Finally, pressure sensing with our woven pressure sensor fabric is demonstrated. Our meter-scale pressure sensor fabric technology will be used for bed and floor sensors for monitoring old people in nursing homes and hospitals.  相似文献   

6.
Capacitive inclination sensors have the advantage because it could easily provide a linear analog output with respect to inclination. Since the dimensions of the sensing region are very small, then this sensor is expected to be widely used in fields where efficient and reliable position control is a primary factor to be considered if this sensor could be mass produced at low cost. Therefore, we proposed fabrication process based on transfer to resin using mold. We successfully fabricated a micro capacitive inclination sensor by a combination of a resin forming method and a mold. The sensor consists of a gap distance of 80 μm between its electrodes. The sensor detects difference of capacitance, which varied with movement of silicone oil accompanying with inclination. When the sensor was inclined, linear analog output was obtained within the range of ?45 to +45°  相似文献   

7.
In this paper, we propose a simple and low-cost fabrication technique for patterning carbon nanotube (CNT) films on polydimethylsiloxane (PDMS), which can be used in flexible sensors and electronics. We demonstrate CNT patterning on both recessed and flat PDMS surfaces using a standard photolithography method. By this proposed technique, we were able to fabricate a CNT film, having a high flexibility and good conductivity, on a PDMS surface. A CNT pattern with a minimum feature resolution of 150 μm was obtained using the proposed fabrication technique. The sheet resistance of the CNT film on the PDMS surface was determined to be in the 100–280 Ω/sq range. The thickness and resultant resistivity of the CNT film can be easily controlled by controlling just the spray duration. Furthermore, the gauge factor of the proposed device is higher than that of metal and it increases as the thickness of the CNT film increases.  相似文献   

8.
A set of flexible MEMS sensor arrays for flow measurements in boundary layers is presented. The sensor principle of these anemometers is based on convective heat transfer from a hot-film into the fluid. Each sensor consists of a nickel sensing element between copper supply tracks. The functional layers are attached either on a ready-made polyimide foil or on a spin-on polyimide layer. These variants are designed to meet the requirements of measurements in different environments. Spin-on technology enables the use of very thin polyimide layers, ideally suited for measurements in transient flows. It is a unique characteristic of the presented arrays that their total thickness can be scaled from 7 to 52 μm. This is essential, because the sensor thickness has to be adapted to the varying thickness of the boundary layers in different aerodynamic tests. With these sensors we meet the special requirements of a wide range of fluid mechanic experiments but in particular those of future active flow control on airplane wings. For less critical flow conditions with much thicker boundary layers, thicker sensors might be sufficient and cheaper, so that sensors fabricated on ready-made foils are perfect for these applications. Since the presented sensors are flexible, they can be attached on curved aerodynamic structures without any geometric mismatches. The entire development, starting from theoretical investigations, is described. Further, the micro-fabrication is discussed, including photolithography, sputtering and wet-etching. In particular the wet-etching of the sensing element is found to be critical for the functional characteristics.  相似文献   

9.
Inductors are basic components of magnetic sensors. Generally, with those sensors, a weak magnetic variation has to be detected. As the sensitivity increases with the inductance value, our objectives are to design inductors with a maximum of turns while keeping millimetric sizes for the sensor. In this work, we present two microcoil fabrication processes compatible with rigid and flexible substrates. The first one is used for the realization of planar microcoils with one step of copper micromoulding. For example, a 40-turn microcoil of 1 mm external diameter and 5 μm copper width and spacing wires has been obtained. The second process allows the fabrication of three-dimensional microcoils (microsolenoids). It is based on two steps of copper micromoulding. In this process, a grey-tone photolithography step is implemented. Microsolenoids with 10–13 wires have been realized.  相似文献   

10.
Woytasik  M.  Grandchamp  J.-P.  Dufour-Gergam  E.  Martincic  E.  Gilles  J.-P.  Megherbi  S.  Lavalley  V.  Mathet  V. 《Microsystem Technologies》2006,12(10):973-978

Inductors are basic components of magnetic sensors. Generally, with those sensors, a weak magnetic variation has to be detected. As the sensitivity increases with the inductance value, our objectives are to design inductors with a maximum of turns while keeping millimetric sizes for the sensor. In this work, we present two microcoil fabrication processes compatible with rigid and flexible substrates. The first one is used for the realization of planar microcoils with one step of copper micromoulding. For example, a 40-turn microcoil of 1 mm external diameter and 5 μm copper width and spacing wires has been obtained. The second process allows the fabrication of three-dimensional microcoils (microsolenoids). It is based on two steps of copper micromoulding. In this process, a grey-tone photolithography step is implemented. Microsolenoids with 10–13 wires have been realized.

  相似文献   

11.
A novel capacitive pressure sensor with the island-notch structure is introduced. Its theory model is established based on the structure theory of the plate capacitive pressure sensor. The relationships between the external pressure and capacitance of the capacitive pressure sensor with the island-notch structure are studied by using the method of the finite element analysis (FEA). The results show that the linearity of the capacitive pressure sensor with island-notch structure reached up 0.9941 in the linear measurement zone, the sensitivity reached up 0.0019 pF/kPa, and the measurement range of the capacitive pressure sensor is enlarged. Thus, the contradictory among measure sensitivity, linearity and measure range is effectively relieved in the capacitive pressure sensors with island-notch. In addition, the interface circuitry of the charge transfer is designed, and the performance of the interface circuitry is analyzed.  相似文献   

12.
The nuclear magnetic resonance (NMR) probe has great influence on signal transmission and reception in NMR technology applications. In this paper, we present a design, fabrication, and test of an NMR probe comprised of a multilayer planar microcoil with a polydimethylsiloxane (PDMS) microchannel. First, geometric parameters of the probe are determined through theoretical analysis. Second, based on a glass substrate, the multilayer planar microcoil is manufactured using repeated photolithography and electroplating processes. During the fabrication process, the polyimide layer is used to package the coil, and the PDMS interlayer is used to adjust the distance from centerlines between the coil and the sample chamber. Third, the resistance and the quality factor of the coil are found to be 1.2158 Ω and 7.217, respectively, at a Larmor frequency of 28.1 MHz. Finally, the NMR probe is tested in an NMR experiment. The transverse relaxation time T2 for the solid PDMS is 20.6 ± 0.4 ms, which is in agreement with 21.1 ± 0.2 ms obtained by a Bruker Minispec MQ60. Results show that the design and fabrication of this NMR probe are feasible for time-domain NMR applications.  相似文献   

13.
In this paper, thin film Pt temperature microsensor in the temperature range of 10–100 K for cryogenic engineering applications is proposed and researched. The sensor is designed with two structures, and they are obtained by micro fabrication technology. The sensors are annealed in different conditions. The degree crystallization and grain size are analyzed by X-ray diffraction and SEM for both as-deposited and annealed sensors. The resistance dependency on temperature test result shows that when temperature is larger and smaller than 50 K, the average temperature coefficient resistance (TCR) of rectangular shape sensor could achieve 3,118 ppm/K and above 257 ppm/K, respectively. Meanwhile, TCR of circular shape sensor is 2,778 ppm/K and above 249 ppm/K, respectively. The good thermal cycle stability is observed. After three cycles between 10 and 100 K, the maximum resistance variation values are 0.0034 and 0.0137 %, which correspond to 0.0082 and 0.061 K temperature shift for the rectangular and circular sensors, respectively. The ΔT/T (%) of rectangular and circular sensors is performed with the magnetic field up to 6T in the temperature range of 10–100 K, and they are within the range of ?19.84 to 0.137 and ?2.18 to 11.33 for rectangular and circular sensors,respectively. The impedance test shows that the sensors have the same electric properties under direct current and alternating current condition.  相似文献   

14.
In this study, a new type of active membrane based on magnetic elastomer composite is manufactured, characterized and integrated into a simple valve. The simple and low-cost fabrication process combined with large displacement capability of the membrane is favorable for use in disposable fluidic devices. Passivated ferromagnetic cobalt nanoparticles (~37 nm) synthesized by the chemical route were embedded in polydimethylsiloxane (PDMS) to fabricate nano-composite flexible membranes. Magneto-mechanical and mechanical properties of the PDMS composite elastomeric membrane loaded with various concentrations of cobalt (Co) nanoparticles (between 15 and 75 % by weight) were studied. Dynamic mechanical analysis (DMA) measurements of the nano-composite membranes were conducted as a function of the applied frequency (between 0.1 and 56 Hz). With higher concentration (50-wt%) of Co nanoparticles in PDMS, the elastic modulus was increased by 3–4 times as compared with that of membranes with lower concentrations of nanoparticles. Shore hardness was maximum for the nano-composite membrane loaded with 50-wt% of Co nanoparticles. A fluidic actuator with 400 μm thick PDMS membrane of 18 mm free diameter loaded with 50-wt% Co nanoparticles was manufactured and tested under external magnetic field. In the region where the magnetic field gradient is highest, high deflection of the membrane could be obtained (0.68 mm for 1 Tesla). However some hysteresis of the membrane deflection could be observed, even at very low frequency. Loading of PDMS with Co nanoparticles allowed a wider range of control of the wetting properties of PDMS surfaces under oxygen plasma treatment, from hydrophobic to hydrophilic to super-hydrophilic. Tunability in hydrophilicity could be achieved by varying the process parameters as verified by contact angles and Fourier transforms infrared (FTIR) spectra before and after plasma treatment. Under certain conditions, 50 % Cobalt-PDMS membrane surfaces exhibited a super-hydrophilic behavior (contact angle ~5°).  相似文献   

15.
We present a microfluidic rheometer that uses in situ pressure sensors to measure the viscosity of liquids at low Reynolds number. Viscosity is measured in a long, straight channel using a PDMS-based microfluidic device that consists of a channel layer and a sensing membrane integrated with an array of piezoresistive pressure sensors via plasma surface treatment. The micro-pressure sensor is fabricated using conductive particles/PDMS composites. The sensing membrane maps pressure differences at various locations within the channel in order to measure the fluid shear stress in situ at a prescribed shear rate to estimate the fluid viscosity. We find that the device is capable to measure the viscosity of both Newtonian and non-Newtonian fluids for shear rates up to 104 s?1 while keeping the Reynolds number well below 1.  相似文献   

16.
In this paper we report the design and fabrication of a beam relay for free space optical interconnection using microlens arrays. Multiple microlens arrays with same focal lengths were designed and fabricated in an out-of-plane layout. This design can be easily integrated with silicon-based optical interconnection devices. The beam relay was fabricated using direct lithography of SU-8 photoresist, and then replicated using UV curable polymer molded with a PDMS intermediate mold. The optical performance was tested and the experimental results show that the optical performances are mainly limited by the aberration of microlenses. Further study needs to be conducted to improve the surface quality of the lenses to reduce the aberrations.  相似文献   

17.
The aim of this paper is to present an integrated process flow for a smart tag with integrated sensors and RFID communication, a flexible tag microlab (FTM). The heart of the designed container tracing system is an RFID system (Reader + Tag) with gas sensing capabilities on board. In the former prototypes, the chemical sensors were integrated on the reader, whereas the tags where addressed like conventional RFID-tags containing also physical (temperature, humidity and light) sensors. However, this paper will show how the gas sensing reader functionalities are being transferred to the tag, reaching a FTM, which represents a real innovation in the field of flexible labels. Key issues for the realisation of the FTM, such us flexible substrates and gas sensor integration technologies will be presented. The process flow employed for the two metal levels interconnect fabrication will be described in detail. The material used is the DuPont? Pyralux® AP 8525R double-sided copper-clad laminate, formed by a Kapton foil with a copper layer on each side. The vias and windows openings are performed by femtosecond laser ablation. The copper interconnections are realized by photolithography and wet chemical etching. The MOX sensors hotplates specially developed to fulfil the FTM constrains in terms of low power consumption has been used to prove two integration technologies into the flexible substrates: chip on flex (COF) wire bonding and anisotropic conductive adhesive (ACA) flip chip bonding. Both technologies will be compared and benchmarked for future product developments.  相似文献   

18.
Here we report a novel technology to obtain arrays of highly efficient magnetic micro-traps that relies on simple fabrication process. Developed micro-traps consist in chains of iron particles diluted in polydimethylsiloxane (PDMS). We analyzed the microstructure of the composite membrane by X-ray tomography. It revealed the predominance of aligned chain-like agglomerates. Largest traps, with diameter ranging from 4 to 11 µm, are found to be the most efficient. The trap arrays were characterized by a density of 1300 magnetic micro-traps/mm2, an average nearest neighbor distance of 21 µm. Implemented in a microfluidic channel operating at a relatively high flow rate of 0.97 µL/s—a flow velocity of 8.3 mm/s—we measured a trapping efficiency of more than 99.7%, with a throughput of up to 7100 trapped beads/min. These performances are competitive with other approaches like hydrodynamic trapping. The strengths of this technology are its simple fabrication and easy handling.  相似文献   

19.
Piezoresistive sensing is one of the most frequently used transduction mechanism in pressure sensors. The piezoresistor placement on the diaphragm and the piezoresistor configuration play a pivotal role in determining the output characteristics of a pressure sensor. In this work, two different pressure sensors with different transverse piezoresistor configurations are studied to determine the effect of piezoresistor configuration on the sensitivity and non-linearity of the pressure sensors. A sensor structure with a square diaphragm size of 1,480 µm edge length and diaphragm thickness of 50 µm is chosen for the study. The design considerations for piezoresistor placement and the piezoresistor shapes are discussed in detail. The sensors are fabricated with bulk micromachined diaphragm and polysilicon piezoresistors. The sensor characteristics are determined for three temperatures, namely, ?5, 25 and 55 °C and for a pressure range of 0–30 Bar. The characterization results indicate that the design with two piezoresistor arms in transverse piezoresistor configuration (2 × 2 Design) has higher sensitivity than the single arm configuration (2 × 1 Design) by about 25 % at 25 °C but it also has a higher non-linearity. The study shows the importance of selecting the proper piezoresistor configuration in the design of pressure sensors.  相似文献   

20.
The fabrication and characterization of an integrated air-gap-capacitor pressure sensor are presented. The capacitor fabrication process uses standard IC processing to create NMOS circuits, and an added polysilicon layer to create poly-to-n+ capacitors with a 0.6-μm-thick dielectric using deposited oxide. Subsequent processing is used to produce deformable, parallel-plate, air-gap capacitors on the front side alongside MOS circuits. Sensor chips are fabricated using 100-μm×100-μm, 100-fF air-gap capacitors with on-chip circuitry. The sensor chip is a part of a capacitive measurement system that uses a charge-redistribution sense technique to achieve very high capacitance resolution. The behavior of the pressure sensor chips was studied as a function of applied pressure in the 0-240-kPa (0-35-psi) range. Measurements indicate a sensitivity of 0.93 mV/kPa (6.40 mV/psi) with a deflection of 10 nm/kPa (70 nm/psi) at 0-69 kPa (0-10 psi). Standard deviations indicate a static pressure resolution of 0.54 kPa (0.078 psi), which translates to 30 attofarads at a sampling frequency of 11 kHz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号