首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The activities of metal oxide catalysts in propane oxidative dehydrogenation to propene have been studied. The catalysts are M/-Al2O3 (where M is an oxide of Cr, Mn, Zr, Ni, Ba, Y, Dy, Tb, Yb, Ce, Tm, Ho or Pr). Both transition metal oxides (TMO) and rare-earth metal oxides (REO) are found to catalyze the reaction at 350-450 °C, 1 atm and a feed rate of 75 cm3/min of a mixture of C3H8, O2 and He in a molar ratio of 4:1:10. Among the catalysts, Cr-Al-O is found to exhibit the best performance. The selectivity to propene is 41.1% at 350 °C while it is 54.1% at 450 °C. Dy-Al-O has the highest C3H6 selectivity among the REO. At 450 °C, the other catalysts show C3H6 selectivity ranging from 16.2 to 37.7%. In general TMO show higher C3H6 selectivity than REO, which, however, show higher C2H4 selectivity. An attempt is made to correlate propane conversion and selectivity to C3H6 with metal-oxygen bond strength in the catalysts. For the TMO a linear correlation is found between the standard aqueous reduction potential of the metal cation of the respective catalyst and its selectivity to propane at 11% conversion. No such correlation has been found in the case of REO. Analyses of the product distributions suggest that for TMO propane activation the redox mechanism seems to prevail while the REO activate it by adsorbed oxygen.  相似文献   

2.
A three-dimensional geometry model of the particle/monolithic two-stage reactor with beds-interspace distributed dioxygen feeding for oxidative coupling of methane (OCM) was set up. The improved Stansch kinetic model adapting different operating temperatures was established to calculate the OCM reactor performance using computational fluid dynamics (CFD) and FLUENT software. The results showed that the calculated values matched well with the experimental values of the conversion of CH4 and the selectivity of products (C2H6, C2H4, CO2, CO) in the OCM reactor. The distributed dioxygen feeding with the percentage of 5–20% based oxygen flow rate of top inlet promoted the OCM reaction in monolithic catalyst bed and led to the conversion of CH4 and the selectivity and yield of C2 (C2H6 and C2H4) increase obviously. The distributed dioxygen feeding was 15%, the conversion of CH4, the selectivity and the yield of C2 reached 34.1%, 68.2% and 23.3%, respectively.  相似文献   

3.
The addition of various metals to Pt-coated ceramic foam monoliths was examined for the autothermal oxidative dehydrogenation of ethane to ethylene at 900°C at contact times of 5 ms. The addition of Sn or Cu to Pt-monoliths enhanced both C2H6 conversions and C2H4 selectivities significantly, giving higher C2H4 yields. No deactivation or volatilization of the catalysts was observed. For Pt-Sn, an increase in the Sn/Pt ratio from 1/1 to 7/1 increased both the conversion and the selectivity. For Pt-Sn (Sn/Pt = 7/1) versus Pt alone the conversion increased by up to 6% and the selectivity up to 5% for an increase in optimal yield from 54.5% with Pt to 58.5% with Pt-Sn. XRD and XPS measurements showed that Pt existed in the form of PtSn and Pt3Sn alloys. The 1/1 Pt-Cu catalyst showed comparable performance, with conversion increasing by 5% and selectivity by 3%. The addition of several other metals to Pt-monoliths decreased both C2H6 conversion and C2H4 selectivity in the order, Sn>Cu>Pt alone>Ag>Mg>Ce>Ni>La> Co. For oxidative dehydrogenation ofn-butane and isobutane, Pt-Sn and Pt-Cu also showed higher conversion than Pt.This research was partially supported by NSF under Grant CTS-9311295.  相似文献   

4.
Titanium-silicon (Ti/Si) binary oxides having different Ti content were prepared by the sol-gel method and utilized as photocatalysts for the hydrogenation and hydrogenolysis of CH2CCH with H2O. The photocatalytic reactivity and selectivity of these catalysts were investigated as a function of the Ti content and it was found that the hydrogenolysis reaction (C2H6 formation) was predominant in regions of low Ti content, while the hydrogenation reaction (C3H6 formation) proceeded in regions of high Ti content. The in situ photoluminescence, diffuse reflectance absorption, FT-IR, XAFS (XANES and EXAFS), and XPS spectroscopic investigations of these Ti/Si binary oxides indicated that the titanium oxide species are highly dispersed in the SiO2 matrices and exist in a tetrahedral coordination exhibiting a characteristic photoluminescence spectrum. The charge transfer excited state of the tetrahedrally coordinated titanium oxide species plays a significant role in the efficient photoreaction with a high selectivity for the hydrogenolysis of CH3CCH to produces mainly C2H6 and CH4, while the catalysts involving the aggregated octahedrally coordinated titanium oxide species show a high selectivity for the hydrogenation of CH3CCH to produce C3H6, being similar to reactions of the powdered TiO2 catalysts. The good parallel relationship between the yield of the photoluminescence and the specific photocatalytic reactivity of the Ti/Si binary oxides as a function of the Ti content clearly indicates that the high photocatalytic reactivity of the Ti/Si binary oxides having low Ti content is associated with the high reactivity of the charge transfer excited state of the isolated titanium oxide species in tetrahedral coordination, [Ti3+-O]*.  相似文献   

5.
Ni–V–O series catalysts for the oxidative dehydrogenation (ODH) of propane were prepared and characterized by BET, XRD, H2-TPR, O2-TPD-MS and electrical conductivity. At 425°C a C3H6 selectivity of 49.9% was observed on Ni0.9V0.1O Y at a C3H8 conversion of 19.4%, and the obtained selectivity is almost two times higher than that over NiO at the roughly same conversion of C3H8. The mobile oxygen species created by the interaction of NiO and V2O5 has been found in the composite catalysts by O2-TPD-MS and electrical conductivity studies, which seems to be responsible for the enhanced selectivity of the propane oxidative dehydrogenation.  相似文献   

6.
The catalytic oxidalive coupling of metnane to ethylene and ethane with manganese oxide catalysts promoted with alkali metal and alkali metallic-chloride has been studied at atmospheric pressure in a fixed bed flow reactor. The main studies of reaction were carried out over maganese oxide catalysts promoted with sodium chloride and the structure and surface morphology of these catalysts was characterized by an X-ray diffraction and a scanning electron microscope. The powdered MnO2 was changed into Mn2O3, and MnO2 containing alkali metallic-chlorides was not changed to new ternary oxides but changed into Mn3O4 and/or Mn2O3 at higher calcination temperature(above 780°C). The optimum content of NaCl promoted was 10–20wt%, an in over 10wt%, the conversion and the selectivity were kept constant. The main factor on deactivation of catalysts was the loss of thepromoter(NaCl). The addition of alkali metal salts to manganese oxide catalyst has enhanced C2(C2H4 + C2H6) selectivity due to neutralizing acid sites more than the electronic factor. It was confirmed that chlorine in alkali metallicchloride has enhanced the formation of C2H4, resulting in a good C2-yield (up to 25.7%).  相似文献   

7.
The hydrogenation of CO2 to hydrocarbons over a precipitated Fe-Cu-Al/K catalyst was studied in a slurry reactor for the first time. Reducibility of the catalyst and effect of reaction variables (temperature, pressure and H2/CO2 ratio of the feed gas) on the catalytic reaction performance were investigated. The reaction results indicated that the Fe-Cu-Al/K catalyst showed a good CO2 hydrogenation performance at a relatively low temperature (533 K). With the increase of reaction temperature CO2 conversion and olefin to paraffin (O/P) ratio in C2-C4 hydrocarbons as well as the selectivity to C2-C4 fraction increased, while CO and CH4 selectivity showed a reverse trend. With the increase in reaction pressure, CO2 conversion and the selectivity to hydrocarbons increased, while the CO selectivity and O/P ratio of C2-C4 hydrocarbons decreased. The investigation of H2/CO2 ratio revealed that CO2 conversion and CH4 selectivity increased while CO selectivity and O/P ratio of C2-C4 decreased with increasing H2/CO2 ratio.  相似文献   

8.
The addition of K2O and MnO promoters enhances catalyst activity and selectivity to light alkenes during CO hydrogenation over silicate-2 (Si-2) supported Fe catalysts. The results of CO hydrogenation and CO-TPD, CO/H2-TPSR, C2H4/H2-TPSR and C2H4/H2 pulse reaction over Fe/Si-2 catalysts with and without promoters clearly show that the MnO promoter mainly prohibits the hydrogenation of C2H4 and C3H6. Therefore, it enhances the selectivity to C2H4 and C3H4 products. Meanwhile further incorporating the K2O additive into the FeMn/ Si-2 catalyst leads to a remarkable increase in both the capacity and strength of the strong CO adspecies. These produce much more [Cad] via their dissociation and disproportionation at higher temperatures. This results in an increase in the CO conversion and the selectivity to light olefins. Moreover, the K2O additive modifies the hydrogenating reactivity of [Cad] and suppresses the disproportionation of C2H4 that occurs as a side-reaction. Both K2O and MnO promoters play key roles for enhancing the selective production of light alkenes from CO hydrogenation over Fe/Si-2 catalyst.  相似文献   

9.
《Applied catalysis》1989,46(1):69-87
Samarium, magnesium and manganese oxide and alkali-promoted oxide catalysts have been prepared and tested for the oxidative coupling of methane. The results show that alkali-promoted oxides inhibit total oxidation and have a higher selectivity for the formation of C2 products than the undoped metal oxides. These catalysts have been promoted by injecting pulses of gaseous chlorinated compounds (dichloromethane and chloroform) during the reaction. It has been found that these chlorinated compounds markedly increase the selectivity for the formation of C2 products for all the MnO2-based catalysts and for lithium-doped MgO and Sm2O3 catalysts. The effect is greatest in MnO2-based catalysts. When dichloromethane is added to a pure, unpromoted MnO2 catalyst the selectivity for the formation of carbon dioxide decreases from 82.6% to 4.1% and the selectivity for the formation of C2H4 increases from virtually zero to 56.3%. The highest C2 selectivity observed after promotion of pure MnO2 by dichloromethane is about 93%. Promotion of these pure oxide catalysts by gaseous chlorinated compounds provides an alternative to alkali promotion as a method of inhibiting total oxidation and of increasing ethylene production.  相似文献   

10.
The oxidation of propane has been investigated in the presence and absence of tetrachloromethane (TCM) on calcium hydroxyapatite (CaHAp), Ca3(PO4)2, CaSO4 and CaO at 723 K. In the absence of TCM, the conversion of C3H8 on CaHAp was 7.7–9.2% during 6 h on-stream while that on Ca3(PO4)2, CaSO4 and CaO was 0.6, 0 and 0.2–0.4%, respectively. The principal products on all catalysts in the absence of TCM were CO and CO2 with small selectivities to C3H6 and C2H4 (both 5–6%) observed on CaHAp. Upon addition of TCM, the selectivity to C3H6 on all catalysts and the conversion of C3H8 on CaSO4 increased while, with increasing time-on-stream, the changes in the conversion and selectivity were dependent upon the nature of the catalysts. XPS and XRD analyses provide evidence for the presence of chlorine in the surface and/or bulk of three of the catalysts, suggesting that chlorinated species on the solids play a role in the selectivity enhancement, but the absence of chlorine from the sulphate demonstrates the dissimilarities of the catalysts in their abilities to sorb and decompose TCM. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The catalytic performance of Fe/Si‐2 and Fe–Mn/Si‐2 catalysts for conversion of C2H6 with CO2 to C2H4 was examined in a continuous‐flow and fixed‐bed reactor. The results show that the Fe–Mn/Si‐2 catalyst exhibits much better reaction activity and selectivity to C2H4 than those of the Fe/Si‐2 catalyst. Furthermore, the coking–decoking behaviors of these catalysts were studied through TG. The catalytic performances of the catalysts after regeneration for conversion of C2H6 or dilute C2H6 in FCC off‐gas with CO2 to C2H4 were also examined. The results show that both activity and selectivity of the Fe–Mn/Si‐2 catalyst after regeneration reached the same level as those of the fresh catalyst, whereas it is difficult for the Fe/Si‐2 catalyst to refresh its reaction behavior after regeneration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
《Catalysis communications》2007,8(9):1438-1442
Plasma catalytic reactions were applied to the conversion of methane to C2, C3 or higher hydrocarbons in a dielectric-barrier discharge (DBD) reactor at atmospheric pressure. Methane conversion was increased with the increase of Pt loading on γ-Al2O3. The highest C2H6 selectivity was 50.3% when 3 wt% Pt/γ-Al2O3 catalyst was calcined at 573 K. Methane conversion was increased with the increase of the catalyst weight in DBD reactor. The major products were C2H6 and C3H8, which were independent of catalyst weight in the presence of catalyst.  相似文献   

13.
The alkylation of imidazole (C3H4N2) with propargyl bromide (C3H3Br) using some magnesium oxides as catalysts under microwave irradiation was carried out with a high activity and selectivity. It has been found that it is possible to prepare efficiently N-alkyl derivatives of heterocycles under microwave irradiation in absence of solvent. Under these experimental conditions N-alkylated heterocycles can be obtained with higher selectivities than when using other basic media.  相似文献   

14.
Epoxidation of propylene by air over modified silver catalyst   总被引:14,自引:0,他引:14  
Epoxidation of C3H6 to C3H6O by air was studied over a silver catalyst modified with alkali or alkaline earth chloride salts. The catalyst preparation factors and the operational conditions could affect obviously the catalytic epoxidation property of the silver catalyst. It was shown that, as a promoter of the silver catalyst, NaCl or BaCl2 is more suitable than LiCl or NH4Cl. The loading of NaCl should be controlled at about 3.8 wt%. Using a feed gas of 10% C3H6/air at a space velocity of 1.75×104 h−1, 18.6% C3H6 conversion and 33.4% selectivity to C3H6O were obtained at 350°C. Using a feed gas of 5% C3H6/air at a space velocity of 2.4×104 h−1, 54.0% C3H6 conversion and 26.3% selectivity to C3H6O were obtained at 390°C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The Fischer–Tropsch synthesis over Co/γ-Al2O3 and Co–Re/γ-Al2O3 was investigated in a fixed-bed reactor at 20 bar and 483 K using feed gases with molar H2/CO ratios of 2.1, 1.5 and 1.0 simulating synthesis gas derived from biomass. With lower H2/CO ratios in the feed, the CO conversion and the CH4 selectivity decreased, while the C5+ selectivity and olefin/paraffin ratio for C2–C4 increased slightly. The water–gas shift activity was low for both catalysts, resulting in high molar usage ratios of H2/CO (close to 2.0), even at the lower inlet ratios (i.e. 1.5 and 1.0). For both catalysts, the drop in the production rate of hydrocarbons when shifting from an inlet ratio of 2.1 to 1.5 was significant mainly because the H2/CO usage ratio did not follow the change in the inlet ratio. The hydrocarbon selectivities were rather similar for inlet H2/CO ratios of 2.1 and 1.5, while significantly deviating from those for an inlet ratio of 1.0. With the studied catalysts, it is possible to utilize the advantages of an inlet ratio of 1.0 (higher selectivity to C5+, lower selectivity to CH4, no water–gas shifting of the bio-syngas needed prior to the FT reactor) if a low syngas conversion is accepted.  相似文献   

16.
Metal pyrophosphates (M–P2O7, where M is V, Zr, Cr, Mg, Mn, Ni or Ce) have been found to catalyze the oxidative dehydrogenation of propane to propene. The reaction was conducted at 1 atm, 450–550°C and feed flowrate of 75 cm3/min (20 cm3/min propane, 5 cm3/min oxygen and the balance is helium). All catalysts showed increase in degrees of conversion and decrease in olefins selectivity with increase in reaction temperature. At 550°C, MnP2O7 exhibited the highest activity (40.7% conversion) and total olefins (C3H6 and C2H4) yield (29.3%). The other catalysts, indicated by their respective metals, may be ranked (based on olefins yield) as V (16.9%) < Cr (17.5%) < Ce (25.1%) < Zr (26.2%) < Ni (26.8%) < Mg (27.9%). The reactivity of the lattice oxygen was estimated from energy of formation of the corresponding metal oxides. Correlation between the selectivity to propene and the standard energy of formation was attempted. Although there was no clear correlation, the result suggested that the lattice oxygen play a key role in the selectivity-determining step.  相似文献   

17.
The effect of vanadium promotion on activated carbon (AC)-supported cobalt catalysts in Fischer–Tropsch synthesis has been studied by means of XRD, TPR, CO-TPD, H2-TPSR of chemisorbed CO and F-T reaction. It was found that the CO conversion could be significantly increased from 38.9 to 87.4% when 4 wt.% V was added into Co/AC catalyst. Small amount of vanadium promoter could improve the selectivity toward C10–C20 fraction and suppress the formation of light hydrocarbon. The results of CO-TPD and H2-TPSR of adsorbed CO showed that the addition of vanadium increased the concentration of surface-active carbon species by enhancing CO dissociation and further improved the selectivity of long chain hydrocarbons. However, excess of vanadium increased methane selectivity and decreased C5+ selectivity.  相似文献   

18.
The effect of some operating conditions such as temperature, gas hourly space velocity (GHSV), CH4/O2 ratio and diluents gas (mol% N2) on ethylene production by oxidative coupling of methane (OCM) in a fixed bed reactor at atmospheric pressure was studied over Mn/Na2WO4/SiO2 catalyst. Based on the properties of neural networks, an artificial neural network was used for model developing from experimental data. To prevent network complexity and effective data input to the network, principal component analysis method was used and the number of output parameters was reduced from 4 to 2. A feed-forward back-propagation network was used for simulating the relations between process operating conditions and those aspects of catalytic performance including conversion of methane, C2 products selectivity, C2 yielding and C2H4/C2H6 ratio. Levenberg-Marquardt method is presented to train the network. For the first output, an optimum network with 4-9-1 topology and for the second output, an optimum network with 4-6-1 topology was prepared. After simulating the process as well as using ANNs, the operating conditions were optimized and a genetic algorithm based on maximum yield of C2 was used. The average error in comparing the experimental and simulated values for methane conversion, C2 products selectivity, yield of C2 and C2H4/C2H6 ratio, was estimated as 2.73%, 10.66%, 5.48% and 10.28%, respectively.  相似文献   

19.
A hybrid artificial neural network-genetic algorithm (ANN-GA) was developed to model, simulate and optimize the catalytic-dielectric barrier discharge plasma reactor. Effects of CH4/CO2 feed ratio, total feed flow rate, discharge voltage and reactor wall temperature on the performance of the reactor was investigated by the ANN-based model simulation. Pareto optimal solutions and the corresponding optimal operating parameter range based on multi-objectives can be suggested for two cases, i.e., simultaneous maximization of CH4 conversion and C2+ selectivity (Case 1), and H2 selectivity and H2/CO ratio (Case 2). It can be concluded that the hybrid catalytic-dielectric barrier discharge plasma reactor is potential for co-generation of synthesis gas and higher hydrocarbons from methane and carbon dioxide and performed better than the conventional fixed-bed reactor with respect to CH4 conversion, C2+ yield and H2 selectivity.  相似文献   

20.
H.X. Dai  C.F. Ng  C.T. Au 《Catalysis Letters》2000,67(2-4):183-192
The catalytic performances and characterization of the catalysts La1.6Sr0.4CuO3.852, La1.6Sr0.4CuO3.857F0.143, and La1.6Sr0.4 CuO3.856Cl0.126 have been investigated for the oxidative dehydrogenation of ethane (ODE) to ethene. X‐ray diffraction results indicated that the three catalysts have a single‐phase tetragonal K2NiF4-type structure. The incorporation of fluoride or chloride ions in the La1.6Sr0.4CuO4-δ lattice can significantly enhance C2H6 conversion and C2H4 selectivity. We observed 83.2% C2H6 conversion, 76.7% C2H4 selectivity, and 63.8% C2H4 yield over La1.6Sr0.4CuO3.857F0.143> and 79.6% C2H6 conversion, 74.6% C2H4 selectivity, and 59.4% C2H4 yield over La1.6Sr0.4CuO3.856Cl0.126 under the reaction conditions of C2H6/O2/N2 molar ratio 2/1/3.7, temperature 660°C, and space velocity 6000 ml h-1 g-1. With the rise in space velocity, C2H6 conversion decreased, whereas C2H4 selectivity increased. Life studies showed that the two catalysts were durable within 60 h of on‐stream ODE reaction. Based on the results of X‐ray photoelectron spectroscopy, O2 temperature-programmed desorption, and C2H6 and C2H6/O2/N2 (2/1/3.7 molar ratio) pulse studies, we conclude that (i) the inclusion of halide ions in the La1.6Sr0.4CuO lattice could promote lattice oxygen mobility, and (ii) the O- species accommodated in oxygen vacancies and desorbed below 600°C favor ethane complete oxidation whereas the lattice oxygen species desorbed in the 600–700°C range are active for ethane selective oxidation to ethene. By regulating the oxygen vacancy density and Cu3/Cu ratio in the K2NiF4-type halo-oxide catalyst, one can generate a durable catalyst with good performance for the ODE reaction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号