首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-dimensional axisymmetric numerical model, including the influence of the cathode and the free surface of the weld pool, is developed to describe the heat transfer and fluid flow in gas tungsten arc (GTA) welding. In the model, a boundary-fitted coordinate system is adopted to precisely describe the cathode shape and deformed weld-pool surface. The current continuity equation has been solved with the combined arc plasma-cathode system, independent of the assumption of current density distribution on the cathode surface, which was essential in the previous studies of arc plasma. It has been shown that the temperature profile, the current, and the heat flux to the anode show good agreement with the experimental data. Moreover, the current and the heat-flux distributions may be affected by the shape of the cathode and the free surface of the weld pool.  相似文献   

2.
Temperature and velocity fields, and weld pool geometry during gas metal arc welding (GMAW) of commercially pure aluminum were predicted by solving equations of conservation of mass, energy and momentum in a three-dimensional transient model. Influence of welding speed was studied. In order to validate the model, welding experiments were conducted under the similar conditions. The calculated geometry of the weld pool were in good agreement with the corresponding experimental results. It was found that an increase in the welding speed results in a decrease peak temperature and maximum velocity in the weld pool, weld pool dimensions and width of the heat-affected zone (HAZ). Dimensionless analyses were employed to understand the importance of heat transfer by convection and the roles of various driving forces in the weld pool. According to dimensionless analyses droplet driving force strongly affected fluid flow in the weld pool.  相似文献   

3.
Three-dimensional transient model for arc welding process   总被引:4,自引:0,他引:4  
A direct computer simulation technique, discrete element analysis (DEA), was utilized in the development of a transient multidimensional (2-D and 3-D) mathematical model for investi-gating coupled conduction and convection heat transfer problems associated with stationary and moving arc welding processes. The mathematical formulation considers buoyancy, electro-magnetic, and surface tension driving forces in the solution of the overall heat transfer conditions in the specimen. Furthermore, the formulation of the model allows realistic consideration of the geometrical variations in the workpiece. The model treats the -weld pool surface as a truly deformable free surface, allowing for the prediction of the weld surface deformations such as the “weld crown.≓ A marked element formulation was employed to monitor the transient de-velopment of the weld pool as determined by the latent heat considerations and the calculated velocities in the weld pool. The model was utilized to simulate the heat and fluid flows in the weld pool that occur during stationary (spot) and moving (linear) gas tungsten-arc welding. Also, the present analysis considers a simple rectangular specimen and a geometrically complex specimen to demonstrate the capability of the model to simulate realistic 3-D arc welding prob-lems. The results of the present investigation clearly demonstrate the significant influence of the heat and fluid flows and the specimen geometry on the development of the weld. Comparison of the predicted and the experimentally observed fusion zone and heat-affected zone (HAZ) geometries indicate good agreement.  相似文献   

4.
Mathematical models of the gas metal arc (GMA) welding process may be used to study the influence of various welding parameters on weld dimensions, to assist in the development of welding procedures, and to aid in the generation of process control algorithms for automated applications. In this work, a three-dimensional (3-D), steady-state thermal model of the GMA welding process has been formulated for a moving coordinate framework and solved using the finite-element method. The model includes temperature-dependent material properties, a new finite-element formulation for the inclusion of latent heat of fusion, a Gaussian distribution of heat flux from the arc, plus the effects of mass convection into the weld pool from the melted filler wire. The influence of weld pool convection on the pool shape was approximated using anisotropically enhanced thermal conductivity for the liquid phase. Weld bead width and reinforcement height were predicted using a unique iterative technique developed for this purpose. In this paper, the numerical model is shown to be capable of predicting GMA weld dimensions for individual welds, including those with finger penetration. Also, good agreement is demonstrated between predicted weld dimensions and experimentally derived relations that describe the effects of process variables and their influence on average weld dimensions for bead-onplate GMA welds on steel plate. E. PARDO, formerly Postdoctoral Fellow, Department of Mechanical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1,  相似文献   

5.
Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.  相似文献   

6.
A mathematical model was developed to calculate the transient temperature and velocity distributions in a stationary gas tungsten arc (GTA) weld pool of 304 stainless steels with different sulfur concentrations. A parametric study showed that, depending upon the sulfur concentration, one, two, or three vortexes may be found in the weld pool. These vortexes are caused by the interaction between the electromagnetic force and surface tension, which is a function of temperature and sulfur concentration, and have a significant effect on weld penetration. For given welding conditions, a minimum threshold sulfur concentration is required to create a single, clockwise vortex for deep penetration. When two metals with different sulfur concentrations are welded together, the weld-pool shape is skewed toward the metal with a lower sulfur content. Detailed physical insights on complicated fluid-flow phenomena and the resulting weld-pool penetration were obtained, based on the surface tension-temperature-sulfur concentration relationships.  相似文献   

7.
Mathematical models capable of accurate prediction of the weld bead and weld pool geometry in gas metal arc (GMA) welding processes would be valuable for rapid development of welding procedures and empirical equations for control algorithms in automated welding applications. This article introduces a three-dimensional (3-D) model for heat and fluid flow in a moving GMA weld pool. The model takes the mass, momentum, and heat transfer of filler metal droplets into consideration and quantitatively analyzes their effects on the weld bead shape and weld pool geometry. The algorithm for calculating the weld reinforcement and weld pool surface deformation has been proved to be effective. Difficulties associated with the irregular shape of the weld bead and weld pool surface have been successfully overcome by adopting a boundary-fitted nonorthogonal coordinate system. It is found that the size and profile of the weld pool are strongly influenced by the volume of molten wire, impact of droplets, and heat content of droplets. Good agreement is demonstrated between predicted weld dimensions and experimently measured ones for bead-on-plate GMA welds on mild steel plate.  相似文献   

8.
A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.  相似文献   

9.
10.
This article presents a mathematical model simulating the effects of surface tension (Maragoni effect) on weld pool fluid flow and weld penetration in spot gas metal arc welding (GMAW). Filler droplets driven by gravity, electromagnetic force, and plasma arc drag force, carrying mass, thermal energy, and momentum, periodically impinge onto the weld pool. Complicated fluid flow in the weld pool is influenced by the droplet impinging momentum, electromagnetic force, and natural convection due to temperature and concentration gradients, and by surface tension, which is a function of both temperature and concentration of a surface active element (sulfur in the present study). Although the droplet impinging momentum creates a complex fluid flow near the weld pool surface, the momentum is damped out by an “up-and-down” fluid motion. A numerical study has shown that, depending upon the droplet’s sulfur content, which is different from that in the base metal, an inward or outward surface flow of the weld pool may be created, leading to deep or shallow weld penetration. In other words, it is primarily the Marangoni effect that contributes to weld penetration in spot GMAW.  相似文献   

11.
Alloying element vaporization rates, plasma composition, and the changes in weld composition during laser welding of 202 stainless steel are discussed in this paper. Iron, manganese, and chromium were the most dominant species in the plasma. During laser welding it is always a difficult task to measure the temperature of the weld pool since this region is surrounded by hot plasma. In this paper a novel technique for the determination of weld pool temperature is presented. It is demonstrated that the relative rates of vaporization of any two elements from the molten pool can serve as an indicator of weld pool temperature, irrespective of the element pair selected. The composition of the solidified region calculated from the measured values of vaporization rate, plasma composition, and the volume of the solidified region was in good agreement with the weld composition determined by electron probe microanalyis technique.  相似文献   

12.
A comprehensive thermofluids numerical model of stationary gas tungsten arc (GTA) welding has been developed and used to examine the effects of thermofluids phenomena on the temperatures and flow velocities in the weld pool and their impact on the resultant weld dimensions for welds produced in high vs low thermal conductivity metals. A dynamic grid re-mapping technique was used to map a block of finite elements into the liquid weld pool to permit use of a kε turbulence model in the liquid. Simulations for low conductivity AISI 304 stainless steel show that good correlation with experimental data was only possible if the effects of fluid flow and turbulent mixing in the weld pool were modeled accurately. Conversely, simulations in higher conductivity metals, 6061 and 1100 aluminum, showed that while the average flow velocities and level of turbulence were higher, their effect on the final temperatures and weld pool dimensions were less significant.  相似文献   

13.
14.
Fluid flow and weld penetration in stationary arc welds   总被引:1,自引:0,他引:1  
Weld pool fluid flow can affect the penetration of the resultant weld significantly. In this work, the computer simulation of weld pool fluid flow and its effect on weld penetration was carried out. Steady-state, 2-dimensional heat and fluid flow in stationary arc welds were computed, with three driving forces for fluid flow being considered: the buoyancy force, the electromagnetic force, and the surface tension gradient at the weld pool surface. The computer model developed agreed well with available analytical solutions and was consistent with weld convection phenomena experimentally observed by previous investigators and the authors. The relative importance of the influence of the three driving forces on fluid flow and weld penetration was evaluated, and the role of surface active agents was discussed. The effects of the thermal expansion coefficient of the liquid metal, the current density distribution in the workpiece, and the surface tension temperature coefficient of the liquid metal on weld pool fluid flow were demonstrated. Meanwhile, a new approach to free boundary problems involving simultaneous heat and fluid flow was developed, and the effort of computation was reduced significantly.  相似文献   

15.
Weld pool fluid flow can affect the penetration of the resultant weld significantly. In this work, the computer simulation of weld pool fluid flow and its effect on weld penetration was carried out. Steady-state, 2-dimensional heat and fluid flow in stationary arc welds were computed, with three driving forces for fluid flow being considered: the buoyancy force, the electromagnetic force, and the surface tension gradient at the weld pool surface. The computer model developed agreed well with available analytical solutions and was consistent with weld convection phenomena experimentally observed by previous investigators and the authors. The relative importance of the influence of the three driving forces on fluid flow and weld penetration was evaluated, and the role of surface active agents was discussed. The effects of the thermal expansion coefficient of the liquid metal, the current density distribution in the workpiece, and the surface tension temperature coefficient of the liquid metal on weld pool fluid flow were demonstrated. Meanwhile, a new approach to free boundary problems involving simultaneous heat and fluid flow was developed, and the effort of computation was reduced significantly.  相似文献   

16.
Previous research by the authors has shown that the welding current has a strong effect on the weld properties and microstructures of gamma TiAl. This article presents the results of experimentally measured and theoretically predicted temperature profiles of gas tungsten arc (GTA) welded gamma TiAl for welding currents of 75 and 100 A. The GTA welding model used in this study accounts for the fluid flow in the weld pool as well as conductive, convective, and phase change heat transfer processes in the solid, liquid, and mushy regions of a metal. The computed temperature fields predicted that as the welding current is increased, the maximum temperature reached in the weld pool also increases. Experimental validation of the computed temperature fields was determined by placing thermocouples at three locations on the specimen, to record the temperatures during welding using computer-based data acquisition hardware and software. The agreement between theoretical predictions and measurements was reasonably good, which provided a direct validation of the model. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.  相似文献   

17.
This article is Part II of a two-part series on the thermal analysis of the arc welding process. In Part I, general solutions for the temperature rise distribution in arc welding of short workpieces were developed based on Jaeger’s classical moving heat source theory for a plane disc heat source with a pseudo-Gaussian distribution of heat intensity and constant values of thermophysical properties at one temperature (400 °C). This was extended in this investigation (Part II) to consider different thermophysical properties at different temperatures (from room temperature (25 °C) to 1300 °C) for a mild steel work material. The objective is to develop a rationale for the selection of an appropriate temperature for the choice of the thermophysical properties for the thermal analysis of arc welding. Since the quality of the weld for a given work material depends both on the thermodynamic and kinetic considerations, namely, the maximum temperatures and the temperature gradients (cooling rates) in appropriate sections of the welded part including the weld bead and the heat-affected zone (HAZ), they were determined in this investigation. The main output parameters from a thermal point of view are the widths and the depths of the melt pool (MP) and the HAZ at the weld joint. Although the length of the weld pool is also a consideration, if the entire length participates in the welding process, which is generally the case, then this is not such an important consideration. It is found that for welds produced in a conductive mode only (i.e., not considering the case of deep penetrating welds produced with keyhole mode), the values of the widths and the depths of the MP and the HAZs are nearly the same (within 10 to 20 pct), irrespective of the values of thermal properties for temperatures in the range of 400 °C to 1300 °C. Hence, the emphasis on the need to consider variable thermal properties with temperature in welding appears to be somewhat exaggerated. Also, based on the thermal analysis of the welding process, it appears that the room-temperature thermophysical properties may not be appropriate, as rightly pointed out by other researchers. The thermal history and the cooling rates were also determined analytically for arc welding of long workpieces, where quasi-steady-state conditions are established and the boundary effects can be ignored, as well as short workpieces, where transient conditions prevail and boundary effects need to be considered. This information can then be used in the appropriate time-temperature-transformation (TTT) diagram for a given steel work material to investigate the nature of the metallurgical transformation and the resulting microstructure in the welding process both in the weld bead and in the adjacent HAZs on either side.  相似文献   

18.
Hot cracking studies on autogenous AA2014 T6 TIG welds were carried out. Significant cracking was observed during linear and circular welding test (CWT) on 4-mm-thick plates. Weld metal grain structure and amount of liquid distribution during the terminal stages of solidification were the key cause for hot cracking in aluminum welds. Square-wave AC TIG welding with transverse mechanical arc oscillation (TMAO) was employed to study the cracking behavior during linear and CWT. TMAO welds with amplitude?=?0.9?mm and frequency?=?0.5?Hz showed significant reduction in cracking tendency. The increase in cracking resistance in the arc-oscillated weld was attributed to grain refinement and improved weld bead morphology, which improved the weld metal ductility and uniformity, respectively, of residual tensile stresses that developed during welding. The obtained results were comparable to those of reported favorable results of electromagnetic arc oscillation.  相似文献   

19.
搭建了双电弧集成冷丝复合焊接系统,研究了冷丝不同位置对焊接过程的影响机理,其中包括冷丝作用位置对其加热熔化作用及表面成形的影响。实验结果表明:冷丝从两引导焊丝正前方送入时,熔池前端对冷丝的加热熔化作用不充分,冷丝末端会顶触熔池底部,随着冷丝的持续送进和母材的向后移动,某一时刻冷丝回弹,焊丝末端的熔滴弹出落在母材表面形成大颗粒飞溅。当冷丝从侧面送入时,熔池一侧的温度较低,影响熔池金属的流动,导致最终的焊缝成形不对称分布。当冷丝从两引导焊丝正后方送入熔池时,冷丝始终插入熔池中,焊接过程稳定,是理想的冷丝作用位置。此外,随着冷丝送丝速度的增加,两种脉冲电流模式(同相和反相)下,熔敷率均随之增加,且相差不大。同相脉冲电流下电弧对冷丝的加热熔化作用最强烈,反相脉冲电流下次之,直流模式下最弱。   相似文献   

20.
Selective vaporization of volatile elements during laser welding of automotive aluminum alloys affects weld metal composition and properties. An experimental and theoretical study was carried out to seek a quantitative understanding of the influences of various welding variables on vaporization and composition change during conduction mode laser welding of aluminum alloy 5182. A comprehensive model for the calculation of vaporization rate and weld metal composition change was developed based on the principles of transport phenomena, kinetics, and thermodynamics. The calculations showed that the vaporization was concentrated in a small high-temperature region under the laser beam where the local vapor pressure exceeded the ambient pressure. The convective vapor flux driven by the pressure gradient was much higher than the diffusive vapor flux driven by the concentration gradient. The computed weld pool geometry, vaporization rates, and composition changes for different welding conditions agreed well with the corresponding experimental data. The good agreement demonstrates that the comprehensive model can serve as a basis for the quantitative understanding of the influences of various welding variables on the heat transfer, fluid flow, and vaporization occurring during conduction mode laser welding of automotive aluminum alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号