首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
S.G. Yoon  S.M. Kang  S.-W. Kim 《Thin solid films》2008,516(11):3582-3585
The optical properties and intrinsic stress of Ta2O5 thin films deposited by dual ion beam sputtering (DIBS) were studied as a function of the assist ion beam voltage (250-650 V). When the assist ion beam voltage was in the range of 350-450 V, the transmittance at the quarter-wave point reached its highest value (lowest absorption). The refractive index increased to 2.185 as the assist ion beam voltage increased from 250 to 350 V, but decreased as the assist ion beam voltage was further increased from 350 to 650 V.  相似文献   

2.
Diamond like carbon (DLC) films were deposited on Si (111) substrates by microwave electron cyclotron resonance (ECR) plasma chemical vapour deposition (CVD) process using plasma of argon and methane gases. During deposition, a d.c. self-bias was applied to the substrates by application of 13·56 MHz rf power. DLC films deposited at three different bias voltages (−60 V, −100 V and −150 V) were characterized by FTIR, Raman spectroscopy and spectroscopic ellipsometry to study the variation in the bonding and optical properties of the deposited coatings with process parameters. The mechanical properties such as hardness and elastic modulus were measured by load depth sensing indentation technique. The DLC film deposited at −100 V bias exhibit high hardness (∼ 19 GPa), high elastic modulus (∼ 160 GPa) and high refractive index (∼ 2·16–2·26) as compared to films deposited at −60 V and −150 V substrate bias. This study clearly shows the significance of substrate bias in controlling the optical and mechanical properties of DLC films.  相似文献   

3.
Cd1−xZnxTe (where x = 0.02, 0.04, 0.06, 0.08) thin film have been deposited on glass substrate at room temperature by thermal evaporation technique in a vacuum at 2 × 10−5 torr. The structural analysis of the films has been investigated using X-ray diffraction technique. The scanning electron microscopy has been employed to know the morphology behaviour of the thin films. The temperature dependence of DC electrical conductivity has been studied. In low temperature range the thermal activation energy corresponding to the grain boundary—limited conduction are found to be in the range of 38–48 μeV, but in the high temperature range the activation energy varies between 86 and 1.01 meV. The built in voltage, the width of the depletion region and the operating conduction mechanism have been determined from dark current voltage (I–V) and capacitor-voltage (C–V) characteristics of Cd1−xZnxTe thin films.  相似文献   

4.
Tantalum pentoxide films were deposited on BK7 glass substrates using oxygen plasma enhanced pulsed laser deposition (OPE-PLD). X-ray diffraction, atomic force microscopy, ultraviolet–visible–near infrared scanning spectrophotometry, and spectroscopic ellipsometry were used to characterize the crystallinity, microscopic morphology and optical properties of films. Results show that the film roughness increased with the increase of oxygen pressure, and decreased with the application of OPE. Meanwhile the use of oxygen plasma in a 2 Pa O2 pressure resulted in the transmittance of the thin film of 91.8% at its peak position (the transmittance of bare substrate). Moreover, the root-mean-square roughness as low as 0.736 nm, and refractive index of 2.18 at 633 nm wavelength, close to the refractive index of bulk Ta2O5 (~ 2.20 at 633 nm wavelength), were obtained.  相似文献   

5.
The study of reflectance and photoluminescence (PL) spectra of as grown and also hydrogen and nitrogen incorporated tetrahedral amorphous carbon (ta-C) films, deposited using an S bend filtered cathodic vacuum arc process is reported here. First the effect of negative substrate bias on the properties of as grown ta-C films and next the effect of varying hydrogen and nitrogen partial pressure at a high substrate bias of − 300 V on the properties of hydrogen and nitrogen incorporated ta-C (ta-C:H and ta-C:N) films are reported for the first time. The values of the optical band gap (Eg) evaluated using the reflectance spectra were found to decrease with the increase of the substrate bias in the as grown ta-C films. Hydrogen incorporation up to 1.9 × 10− 2 Pa partial pressure in as grown ta-C films increased the values of Eg and beyond which the values of Eg decreased while the nitrogen incorporation up to 3.0 × 10− 1 Pa partial pressure has no effect on the Eg values. The PL spectra indicated a strong peak at ∼2.66 eV in as grown ta-C films deposited at − 20 V substrate bias. This main peak was found to shift to higher energy with the increase of the substrate bias up to − 200 V and thereafter the PL peak shifted towards the lower energy. Other peak at 3.135 eV starts appearing and this is found to start shifting to higher energy for films deposited at higher substrate bias. The intensity of the main PL peak was enhanced at low temperature and several other peaks started appearing in place of the broad peak at ∼3.16 eV. The peak width and area of both the main peak were found to decrease with the increase of substrate bias in as grown ta-C films and with the increase of the hydrogen and nitrogen partial pressure used in depositing ta-C:H and ta-C:N films. The current models on the source of luminescence in amorphous carbon have been discussed.  相似文献   

6.
GaN films with different thicknesses were grown on Si(111) substrates by Plasma—Assisted Molecular Beam Epitaxy (PA-MBE). The optical properties of the films were investigated using spectrophotometric measurements of the reflectance in the wavelength range 200–3,300 nm. With increasing film thickness, the refractive index (n) increased slightly, while the optical energy gap (Eg) changed with no specific trend. The structural properties of the grown films were studied at (002) reflections using two types of rocking curve measurements; normal rocking curve (ω-scan) and triple axis rocking curve (ω/2θ-scan). The Full Width at Half Maximum (FWHM) of rocking curve decreased with increasing film thickness. Hall effect measurements showed that all the samples were n-type with carrier concentrations decreasing from 8.025 × 1018 to 5.65 × 1017 cm−3, and mobility increasing from 14 to 110 cm2 V−1 s−1 as increasing the film thickness from 590 to 1,420 nm, respectively. Photoluminescence (PL) spectra for the grown GaN films with different thicknesses were measured at room temperature. PL spectra for all the samples exhibited band edge (BE) emissions at peak energies of 3.24 eV, with peak intensities increased with increasing the film thickness.  相似文献   

7.
ZnTe films were deposited on glass substrates at different substrate temperatures in the range 30–300 °C. The thickness of the films was about 200 nm. The films exhibited cubic structure with preferential orientation in the (111) direction. Band gap values in the range 2.34–2.26 eV are observed with increase of the substrate temperature. The refractive index values are in the range of 2.55–2.92 for the films deposited at different substrate temperatures. It is observed that the conductivity increases continuously with temperature. Laser Raman studies indicated the presence of peaks at 206.9 and 412.2 cm−1corresponding to the first order and second order LO phonon.  相似文献   

8.
Nickel oxide (NiO) thin films were prepared on glass substrates at various bias voltages using dc reactive magnetron sputtering technique. The influence of substrate bias voltage on structural, optical and electrical properties was systematically investigated using X-ray diffraction (XRD), SEM, EDS, spectrophotometer and Hall effect studies. The NiO films are crystalline with preferential growth along (2 0 0) plane. The NiO films exhibit optical transmittance of 55% and direct band gap of 3.78 eV at the substrate bias voltage of −75 V. The electrical resistivity decreases as substrate bias voltage increases from 0 to −75 V thereafter it was slightly increased.  相似文献   

9.
Thin films of compositional graded Ba1−x Sr x TiO3 (BST) (x decreasing from 0.3 to 0) were prepared on fused quartz and Pt/Ti/SiO2/Si substrates by RF magnetron sputtering. The microstructure of the graded BST thin films was characterized by X-ray diffraction (XRD). It indicates that the films were crystallized with peroveskite structure and (100) + (111) preferred orientation. The refractive index and the band gap were determined at room temperature in the wavelength 200–1100 nm from spectrophotometric measurements of the transmittance. The average value of the refractive index is found to be 2.17 for the graded BST films in the wavelength 400–1000 nm. The optical band gap of the graded BST film was 3.77 eV. The dielectric measurement showed that the dielectric constant and loss factor of the graded BST film was 318.04 and 0.028 at 100 KHz and room temperature.  相似文献   

10.
Aluminum-doped zinc oxide (ZnO:Al) thin films were deposited on glass, polycarbonate (PC), and polyethylene terephthalate (PET) substrates by r.f. magnetron sputtering. The substrate dc bias voltage varied from 0 V to 50 V. Structural, electrical and optical properties of the films were investigated. The deposition rate of ZnO:Al films on glass substrate initially increased with the bias voltage, and then decreased with further increasing bias voltage. It was found that the best films on glass substrate with a low as 6.2 × 10− 4 Ω cm and an average transmittance over 80% at the wavelength range of 500-900 nm can be obtained by applying the bias voltage of 30 V. The properties of the films deposited on polymer substrate, such as PC and PET, have a similar tendency, with slightly inferior values to those on glass substrate.  相似文献   

11.
Thin films of molybdenum oxide were formed on glass and silicon substrates by sputtering of molybdenum target under various sputtering powers in the range 2.3–6.8 W/cm2, at a constant oxygen partial pressure of 2 × 10−4 mbar and substrate temperature 523 K employing DC magnetron sputtering technique. The effect of sputtering power on the core level binding energies, chemical binding configurations, crystallographic structure, surface morphology and electrical and optical properties was systematically studied. X-ray photoelectron spectroscopic studies revealed that the films formed at sputtering powers less than 5.7 W/cm2 were mixed oxidation states of Mo5+ and Mo6+. The films formed at 5.7 W/cm2 contained the oxidation state Mo6+ of MoO3. Fourier transform infrared spectra contained the characteristic optical vibrations. The presence of a sharp absorption band at 1,000 cm−1 in the case of the films formed at 5.7 W/cm2 was also conformed the existence of α-phase MoO3. X-ray diffraction studies also confirmed that the films formed at sputtering powers less than 5.7 W/cm2 showed the mixed phase of α-and β-phase of MoO3 where as at sputtering power of 5.7 W/cm2 showed single phase α-MoO3. The electrical conductivity of the films increased from 8 × 10−6 to 1.2 × 10−4 Ω−1 cm−1, the optical band gap decreased from 3.28 to 3.12 eV and the refractive index decreased from 2.12 to 1.94 with the increase of sputtering power from 2.3 to 6.8 W/cm2, respectively.  相似文献   

12.
TiAlN films were deposited by ion beam sputter deposition (IBSD) using a Ti-Al (90/10) alloy target in a nitrogen atmosphere on thermal oxidized Si wafers. Effects of ion beam voltage, substrate temperature (Ts) and post-annealing conditions on electrical properties and oxidation resistance of TiAlN films were studied. According to the experimental results, the proper kinetic energy provided good crystallinity and a dense structure of the films. Because of their better crystallinity and predomination of (200) planes, TiAlN films deposited with 900 V at low Ts (50 °C) have shown lower resistivity than those at high Ts (250 °C). They also showed better oxidation resistance. If the beam voltage was too high, it caused some damage to the film surfaces, which caused poor oxidation resistance of films. When sufficient kinetic energy was provided by the beam voltage, the mobility of adatoms was too high due to their extra thermal energy, thus reducing the crystallinity and structure density of the films. A beam voltage of 900 V and a substrate temperature of 50 °C were the optimum deposition conditions used in this research. They provided good oxidation resistance and low electrical resistivity for IBSD TiAlN films.  相似文献   

13.
ZnTe1−x Se x films were deposited on glass substrates kept at 200 °C by the electron beam evaporation technique. These films exhibited cubic structure and the lattice parameter increased with increase of Tellurium concentration in the films which confirmed the solid solution formation. The grain size is found to increase with Te content. The dislocation density and lattice strain show a decreasing trend with increasing of Te content. Band gap values of 2.73 eV, 2.63 eV, 2.52 eV and 2.41 eV have been calculated for the films of composition ‘x’ = 0.2, 0.4, 0.6 and 0.8, respectively, which confirmed the formation of solid solution between ZnSe and ZnTe. Refractive index of the films increased from 2.535 to 2.826 as the concentration of Te increased. All the films showed high resistivity values. Laser Raman spectral studies of ZnTe1−x Se x revealed LO phonon frequencies whose values are located in between the LO phonon frequencies of ZnSe and ZnTe.  相似文献   

14.
Titanium nitride (TiN) thin films were prepared by means of reactive DC sputtering on quartz and sapphire substrates. Structural, electrical and optical effects of deposition parameters such as thickness, substrate temperature, substrate bias voltage were studied. The effect of substrate temperature variations in the 100-300°C range and substrate bias voltage variations in the 0-200 V DC range for 45-180 nm thick TiN films were investigated. Temperature-dependent electrical resistivity in the 100-350 K range and optical transmission in the 300-1500 nm range were measured for the samples. In addition, structural and morphological properties were studied by means of XRD and STM techniques.The smoothest surface and the lowest electrical resistivity was recorded for the optimal samples that were biased at about Vs=−120 V DC. Unbiased films exhibited a narrow optical transmission window between 300 and 600 nm. However, the transmission became much greater with increasing bias voltage for the same substrate temperature. Furthermore, it was found that lower substrate temperatures produced optically more transparent films.Application of single layers of MgF2 antireflecting coating on optimally prepared TiN films helped increase the optical transmission in the visible region to more than 40% for 45 nm thick samples.  相似文献   

15.
Mo0.5W0.5Se2 thin films were obtained by using relative simple chemical route at room temperature. Various preparative conditions of the thin films are outlined. The films were characterized by X-ray diffraction, scanning electron microscope, optical and electrical properties. The grown films were found to be uniform, well adherent to substrate and brown in color. The X-ray diffraction pattern shows that thin films have a hexagonal phase. Optical properties show a direct band gap nature with band gap energy 1.44 eV and having specific electrical conductivity in the order of 10−5 (Ωcm)−1.  相似文献   

16.
Copper nitride (Cu3N) films were deposited on glass substrates by sputtering of copper target under various substrate temperatures in the range 303–523 K using dc reactive magnetron sputtering. The substrate temperature highly influenced the structural, mechanical, electrical and optical properties of the deposited films. The X-ray diffraction measurements showed that the films were of polycrystalline nature and exhibit preferred orientation of (111) phase of Cu3N. The microhardness of the films increased from 2.7 to 4.4 GPa with the increase of substrate temperature from 303 to 473 K thereafter decreased to 4.1 GPa at higher temperature of 523 K. The electrical resistivity of the films decreased from 8.7 × 10−1 to 1.1 × 10−3 Ωcm and the optical band gap decreased from 1.89 to 1.54 eV with the increase of substrate temperature from 303 to 523 K respectively.  相似文献   

17.
Tantalum doped TiO2 thin films ((TiO2)1−x (Ta2O5) x , x=0, 0.1%, 0.3%, 0.5%, 0.8%) were prepared on ITO-coated substrates by means of the sol–gel method and spin coating technology followed by rapid thermal annealing treatment (RTA). The effects of various processing parameters, including Ta content (x=0–0.8%) and annealing temperature, on the growth and properties of thin films were investigated. Structural characteristics by X-ray diffraction analysis indicated that the doping of Ta2O5 in the TiO2 without change the anatase structure of TiO2 thin films. The optical transmittance of (TiO2)1−x (Ta2O5) x thin films decrease from 50% down to 20% with increasing the Ta2O5 concentrations from x=0.00 to x=0.8%. The absorption coefficient shows energy gap were decreased with increasing Ta2O5 content from 2.932 eV for x=0.00 to 2.717 eV for x=0.8%. Doping TiO2 with Ta2O5 can lower its band gap and shift its optical response to the visible region.  相似文献   

18.
The effects of applying a positive bias of 25 to 100 V on the optical, structural and photoluminescence (PL) properties of hydrogenated nanocrystalline silicon (nc-Si:H) films produced by layer-by-layer (LBL) deposition technique has been studied. Optical characterization of the films has been obtained from UV-VIS-NIR spectroscopy measurements. Structural characterization has been performed using X-ray diffraction, micro-Raman spectroscopy and field emission scanning electron microscope (FESEM). PL spectroscopy technique has been used to investigate the PL properties of the films. In general, the films formed shows a mixed phase of silicon (Si) nanocrystallites embedded within an amorphous phase of the Si matrix. The crystalline volume fraction and grain size of the Si nanocrystallites have been shown to be strongly dependent on the applied bias voltage. High applied bias voltage enhances the growth rate of the films but reduces the refractive index and the optical energy gap of the films. Higher crystalline volume fraction of the films prepared at low bias voltages exhibits room temperature PL at around 1.8 eV (700 nm).  相似文献   

19.
MgO films were prepared by using pulsed cathodic vacuum arc deposition technique. The substrate bias voltage was in the range of −150 to −750 V. Film structure was investigated by X-ray diffraction (XRD). The annealing effect of thermal spike produced by the impacting of energetic ions was analyzed. The calculated results showed that the lifetime of a thermal spike generated by an energetic ion with the energy of 150 eV was less than one picosecond and it was sufficient to allow Mg2+ or O2- to move one bond length to satisfy the intrinsic stress relief in the affected volume. The MgO(200) lattice spacings of the films deposited at different bias voltages were all larger than the ideal value of 2.1056 Å. As the bias amplitude increased the lattice spacing decreased, which indicated that the compressive stress in the film was partially relieved with increasing impacting ion energy. The stress relief also could be reflected from the film orientation with bias voltage. The biaxial elastic modulus for MgO(100), MgO(110) and MgO(111) planes were calculated and they were M(100) = 199 GPa, M(110) = 335 GPa and M(111) = 340 GPa, respectively. The M values indicated that the preferred orientation will be MgO(200) due to the minimum energy configuration when the lattice strain was large. It was confirmed by the XRD results in our experiments.  相似文献   

20.
Mg x Zn1−x O (0 ≤ x ≤ 0.35) thin films have been deposited by sol–gel technique and the composition related structural, electrical, and optical properties are investigated. All the films have hexagonal wurtzite structure and the separation of MgO phase occurs when x = 0.3 and 0.35. With the increase of Mg content, the densification of the films decrease and band gap values increase. The maximum band gap value reaches 3.56 eV when x = 0.15. After Mg doping the conductivities of the Mg x Zn1−x O films are reduced greatly and the electrical current–voltage (IV) characteristics show nonlinearity for x > 0.15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号