首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以Mo粉和Si粉为原料,采用熔浆法在氮气环境中制备了C/C复合材料的Mo.Si—N系抗氧化涂层,并对涂层1400℃预氧化热处理前后的组织结构和氧化行为进行了研究。结果表明,Mo.Si—N涂层除具有与Mo.Si系涂层相同的SiC底层和MoSi2/Si主结构层外,还形成了厚度不均匀的Si3N4/SiC/Si表面层。Mo-Si—N系涂层具有1400℃稳定抗氧化能力和1450℃长时间氧化防护潜力;经1400℃预氧化热处理后,涂层的最高抗氧化温度达到了1500℃,氧化12小时后重量损失率小于1wt%。  相似文献   

2.
以TiSi2、SiC和Mo粉为原料通过反应烧结方法制备Si3N4基陶瓷,并测试其抗氧化性能.结果表明:Si3N4-TiN-SiC陶瓷的质量增量随着氧化时间的延长而增加,氧化质量增量随时间的变化基本服从抛物线规律,同时质量增量随着氧化温度的升高而增加.而Si3N4-TiN-MoSi2-SiC复合陶瓷质量增量在低温下随着时间延长而增加,在高温下质量增量随着时间延长而减少.XRD和SEM结果表明Si3N4-TiN-SiC陶瓷的氧化产物主要是TiO2、Si02和Si2N20,而Si3N4-TiN-MoSi2-SiC陶瓷则是Ti02、Si02、Si2N2O和Mo03.  相似文献   

3.
用湿化学方法,通过非均匀成核方式将烧结助剂Al2O3,Y2O3均匀包覆到纳米SiC及Si3N4颗粒表面.经烧结助剂表面包覆修饰后的SiC,Si3N4粉体表现出相似的胶体特性,其等电点IEP分别从pH=3.4,pH=4.4移至pH=8.6,pH=9.2.在pH=7.5时,被覆烧结助剂的SiC,Si3N4颗粒都具有较高的Zeta电位正值,具有良好的分散性.然后,通过胶态悬浮液混合,将纳米SiC均匀分散到Si3N4基体中.从而实现纳米复相陶瓷中各相的均匀混合.实验结果表明,用湿化学方法制备的Si3N4/SiC纳米复相陶瓷材料具有较均匀的显微结构、良好的烧结性能和力学性能.  相似文献   

4.
采用非均相沉淀法制得Cu包裹SiC复合粉体,利用粉末冶金和常压烧结制备SiC(Cu)/Fe复合材料。利用Zeta电位仪、XRD,EDS以及SEM等手段对包裹粉体和烧结样品进行了分析。结果表明,采用非均相沉淀法可以得到Cu/SiC复合粉体。包裹后的粉体与原始SiC粉体的表面电位不同,达到了对SiC颗粒表面改性的目的。Cu作为过渡层改善了SiC/Fe的界面相容性,在1050℃烧结的样品只有微量的FeSi或Fe2Si生成,界面反应得到有效控制,获得化学结合的界面,温度过低不能烧结致密,温度过高出现大量缺陷。  相似文献   

5.
采用热压烧结工艺制备出HfB2—20%SiC(HS)、HfB2-20%SIC-5%Si3N4(HSS)和HfB2—20%SIC-5%AIN(HSA)(体积分数,下同)3种超高温陶瓷基复合材料,对材料进行了微结构表征和力学性能测试,并对Si3N4、AIN烧结助剂的作用机理进行了初步分析。结果表明,与HfB2—20%SIC相比,Si3N4和AIN烧结助剂的引入使材料的烧结温度从2200℃降低到1850℃,相对密度从95%提高到99%左右。材料的平均晶粒尺寸显著降低,形成了相应的晶粒边界相。力学性能测试结果表明,HfB2—20%SiC-5%Si3N4和HfB2—20%SiC-5%AIN的抗弯强度和断裂韧性均比HfB2—20%SiC获得一定程度的提高。烧结助剂的引入使SiC/HfB2超高温陶瓷材料的断裂模式从单纯的穿晶断裂转变为穿晶/沿晶混合的断裂模式。  相似文献   

6.
以TiSi2、SiC和Mo粉为原料,通过反应烧结方法制备Si3N4基陶瓷,并测试其力学性能。结果表明:随着SiC含量的增加,复合陶瓷的硬度和抗弯曲强度先升高然后下降,当SiC含量为40wt%时,复合陶瓷的硬度和抗弯曲强度达到最大值,分别为HRA71和288MPa;随着Mo含量的增加,Si3N4-TiN-MoSi2-SiC复合陶瓷的硬度逐渐提高,而室温抗弯强度则是先增加后减小,当Mo含量为10wt%时,Si3N4-TiN-MoSi2-SiC复合陶瓷的抗弯强度达到最大值,为321MPa。此外随着热震次数的增加,两种复合陶瓷的弯曲强度均下降,在相同的循环次数下,Si3N4-TiN-SiC-MoSi2陶瓷的热震性能优于Si3N4-TiN-SiC陶瓷。  相似文献   

7.
本文主要讨论了Cu—SiC复合粉体经球磨后的烧结性能变化情况,通过对球磨后Cu—SiC复合粉体进行XRD、DSC分析,来了解球磨过程对Cu—SiC粉体以及烧结体性能的影响。X射线结果表明:随着球磨加工的进行,粉体的晶粒尺寸减小,Cu衍射峰消失。DSC分析的结果表明:在粉体中储存大量的能量,这些能量的储存降低了复合粉体的烧结温度,改善了烧结体的强度。烧结实验结果表明:在800℃的烧结温度下,经20h球磨后,粉体的抗折强度达到了15MPa以上。  相似文献   

8.
C/C复合材料Mo-Si-N抗氧化涂层的制备   总被引:8,自引:0,他引:8  
在C/C复合材料表面采用熔浆法制备Mo—Si系涂层的烧结过程中通入氮气,开发了Si3N4.MoSi2/Si—SiC(Mo-Si-N系)多层抗氧化涂层,并初步考察了涂层的抗氧化性能。结果表明,多层涂层的致密性主要受制于起始氮化温度。只有在Si熔点以上通入氮气,才能获得致密无缺陷的涂层。多层涂层的底层为SiC,外层为Si3N4,中间层为MoSi2/Si。这种多层涂层的抗氧化性能与涂层中MoSi2的含量有关;MoSi2含量为30%(体积分数,下同)和40%时,与真空中合成的Mo-Si涂层相比,高温抗氧化性能显著改善,抗氧化温度提高到1400℃~1450℃。  相似文献   

9.
Si3N4/SiC纳米复合材料由于具有优良的力学和热性能,广泛应用于涡轮发动机、热交换器和其他复杂情况中。然而,不添加添加剂很难制备出Si3N4/SiC复合材料。添加剂在烧结过程形成液相从而促进复合材料的致密化。然而,添加剂的存在降低了复合材料的高温力学性能。通常在不添加添加剂的情况下,采用电场辅助烧结,利用聚合物前体路线制备Si3N4/SiC复合材料。本研究中,在无添加剂、温度1700°C、真空50MPa条件下,热压烧结2h,利用非晶前体路线成功制备了六方-BN致密化的Si3N4/SiC复合材料。聚合物前驱体和BN的作用减少了的SiC含量。并对相变、致密化、微观组织和力学性能进行了讨论。  相似文献   

10.
对机械合金化SiC/MoSi2的先驱粉体及随后反应烧结制备SiC/MoSi2复合材料工艺研究表明:经机械合金化的先驱粉体主要成分为MoSi2。反应烧结温度在Si的熔点以上时,由于Si在MoSi2颗粒的表面的润湿铺展,导致烧结1h后的产物为Mo5Si3C,MoSi2,SiC和单质Si;在Si的熔点以下时,对过渡相Mo5Si3C的产生有一定抑制作用,反应烧结过程中只有少量过渡相Mo5Si3C出现;通过1600℃真空热处理2h可以基本上消除Mo5Si3C相,得到只有MoSi2和SiC两相的均匀材料。  相似文献   

11.
使用AEM和HREM研究了添加纳米SiC颗粒和同时添加纳米SiC颗粒及SiC晶须的两种Si3N4 复合陶瓷材料的微观组织和断裂机制。结果表明 ,部分SiC颗粒分布在Si3N4 晶内 ,SiC晶须分布在Si3N4 晶粒之间 ,SiC颗粒和晶须与Si3N4 界面之间不存在第二相组织 ,非晶组织大多分布在Si3N4 三叉晶界。断裂裂纹主要沿晶界和相界面扩展 ,也可能穿过少数Si3N4 晶粒。当裂纹扩展遇到SiC颗粒和 /或SiC晶须时 ,会发生转弯 ,产生分枝裂纹或微裂纹并在Si3N4 晶内和Si3N4 晶粒的断裂表面引起晶格畸变 ,这降低了裂纹扩展能量 ,从而改善复合陶瓷材料的断裂强度和断裂韧性  相似文献   

12.
SiC(Cu)/Fe复合材料制备工艺研究   总被引:1,自引:0,他引:1  
采用非均相沉淀法制得Cu包裹SiC复合粉体,利用粉末冶金和常压烧结制备SiC(Cu)/Fe复合材料.利用Zeta电位仪、XRD,EDS以及SEM等手段对包裹粉体和烧结样品进行了分析.结果表明,采用非均相沉淀法可以得到Cu/SiC复合粉体.包裹后的粉体与原始SiC粉体的表面电位不同,达到了对SiC颗粒表面改性的目的.Cu作为过渡层改善了SiC/Fe的界面相容性,在1050℃烧结的样品只有微量的FeSi或Fe2Si生成,界面反应得到有效控制,获得化学结合的界面,温度过低不能烧结致密,温度过高出现大量缺陷.  相似文献   

13.
葛山  尹玉成 《轻金属》2008,(5):58-61
采用自制的抗冰晶石侵蚀试验炉,模拟了Si3N4结合SiC制品在电解铝槽中的工作情况,并借助SEM、X射线衍射仪及能谱仪(EPAX)研究了Si3N4结合SiC制品不同位置的损毁机理。结果表明:Si3N4结合SiC制品在空气部分的损坏主要是由于Si3N4和SiC氧化导致的;而在冰晶石电解质与空气界面处,由于化学反应形成的氧化一侵蚀一渗透恶性循环使得侵蚀最为严重,电解质在金属铝液中的溶解和由于试样本身结构中的气孔可能是Si3N4结合SiC制品在金属铝液中发生侵蚀的主要原因。  相似文献   

14.
针对氮化烧成Si_3N_4/SiC复相耐火材料的成本高、能耗大及传热损失大的突出问题,研究制备了免烧成低密度Si_3N_4/SiC复相耐火材料。研究以硅藻土作为硅源,蔗糖作为碳源,通过碳热还原氮化法制备了Si_3N_4/SiC复相粉体。再以该复相粉体为原料,以添加不同量Si粉(0%,5%,10%)的蔗糖作为结合剂,分别在60、90、120℃3个温度点热处理2 h,150℃热处理8 h后,制备成免烧成低密度Si_3N_4/SiC复相耐火材料。采用XRD和SEM对粉体的物相及微观形貌进行表征。结果表明:粉体的物相为α-Si3N4,β-Si3N4,β-Si C和Fe3Si,通过计算得到α-Si3N4,β-Si3N4和β-Si C的相对含量分别为4.28%,29.74%和59.40%;硅藻土中含有较高含量的Fe杂质元素导致少量Fe3Si生成;粉体中β-Si3N4呈短柱状,β-Si C以细小颗粒的形式存在。在N2(99.999%)保护条件下,1000°C模拟使用这种Si_3N_4/SiC复相耐火材料1h后发现,Si粉的添加量对其体积密度和显气孔率的影响不大,体积密度变化范围是1.48~1.51g·cm-3,显气孔率变化范围是33.36%~34.62%;Si粉添加量为5%时,材料的抗折强度和抗压强度达到最大,分别为3.78和31.95 MPa。  相似文献   

15.
以Y2O3(4N)和La2O3(3N)为原料,采用化学共沉淀方法制备Y1.8La0.2O3粉体,粉体压制后氢气氛下分别采用常规烧结和微波烧结制备Y1.8La0.2O3透明陶瓷。结果表明:900℃煅烧2 h制备的粉体近似球形,粒径约40~60 nm,采用氢气氛下1450℃微波烧结30 min下,可以获得致密性较高、晶粒细小、韧性好、透光率较高的Y1.8La0.2O3透明陶瓷。与常规气氛烧结相比,微波气氛烧结温度明显降低,时间显著减少,且晶粒更细小,其断裂形式由常规烧结时的沿晶断裂逐步过渡到穿晶断裂。  相似文献   

16.
以低压铸造用升液管为研究目的,以Y2O3-Al2O3-Fe2O3为复合烧结助剂,磨切单晶硅废料Si粉和SiC为主料,反应烧结法制备Si3N4/SiC复相陶瓷。研究了Y2O3含量对复合材料结构和力学性能的影响,采用XRD、SEM对复合材料的相组成、微观形貌进行分析。结果表明,反应烧结后试样生成Si3N4结合SiC晶粒为主相的烧结体,并含有少量Sialon晶须及未反应的Si。Y2O3含量对复相陶瓷力学性能影响很大,在分析稀土Y2O3作用机理的基础上,得到2.5%Y2O3优化试样的力学性能优良,相对密度达到88%,维氏硬度达到1.1 GPa,常温抗弯强度50 MPa。  相似文献   

17.
采用新型复合SiC、复合Si3N4和TiN涂层刀具对用于露天煤矿大型拖轮的高锰钢进行了切削加工对比研究,测量了切削温度、后刀面磨损量与切削时间或切削速度的关系曲线,以及刀具前、后刀面显微磨损、破损形貌和化学变化。试验表明,复合SiC是切削高锰钢的较理想的刀具,在切削效率和经济效益上均优于TiN涂层刀具和复合Si2N4刀具。  相似文献   

18.
以Co、Sb粉体为原料,利用机械合金化(MA)和放电等离子烧结(SPS)法制备SiC/CoSb3复合热电材料。采用X-射线衍射法确定机械合金化粉末和SPS烧结块体的相组成,用透射电子显微镜(TEM)观察粉体形貌和块体的显微结构。在300~800K范围内测量了复合热电材料的电阻率、塞贝克系数和功率因子,研究了纳米SiC颗粒的添加对复合材料热电性能的影响。研究结果表明,SiC颗粒的引入使复合材料的电阻率降低,功率因子提高。在680K时0.1vol%SiC/CoSb3复合材料的功率因子比单相CoSb3热电材料提高了约100μW/m·K^2。  相似文献   

19.
以硅粉和炭黑为原料,在N2气氛中通过燃烧合成制备出纳米SiC粉体。利用XRD、SEM等手段研究了N2压力、球料比、研磨时间等因素对燃烧合成反应的影响。结果表明,球料比和研磨时间对物料的反应程度影响显著。在球料比≥12.5∶1、球磨时间≥4 h的条件下,原料粉体可实现完全燃烧,生成产物主要为β-SiC,平均颗粒尺寸小于100 nm。在实验基础上,结合热力学分析,研究指出SiC是在N2催化作用下通过Si-C燃烧合成得到的,反应历程为:Si粉首先与N2反应生成Si3N4,同时放出大量的热,随着反应温度的升高,先生成的Si3N4发生分解,释放出的游离Si与C反应生成SiC。  相似文献   

20.
采用化学气相沉积方法,在1200℃~1600℃温度范围内,于不同的NH3流量条件下,合成了Si/C/N纳米粉体,研究了粉体的制备工艺、成分、相组成与其微波介电性能之间的关系.结果表明:NH3流量增加,粉体中N含量升高,随着合成温度的提高,粉体的晶化程度增强,主要为β-SiC相.在SiC晶格中固溶有N原子,且N原子的固溶量随合成温度升高而减少.Si/C/N纳米粉体中SiC微晶含量,以及SiC微晶中固溶的N原子浓度对粉体的ε',ε(")和损耗因子tgδ(ε"/ε')起着重要作用.N原子固溶所导致的极化驰豫损耗和漏导损耗是Si/C/N纳米粉体具有吸波性能的主要机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号