首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ozone reacts with free aqueous chlorine when present as hypochlorite ion (OCl) with a second order rate constant of 120 ± 15 M−1 s−1 at 20°C. About 77% of the chlorine reacts to produce Cl and 23% is oxidized to ClO3. No ClO4 is formed. Conversion of chlorine to monochloramine reduces the ozone reaction rate to 26 ± 4 M−1 s−1, independent of pH, NH2Cl is transformed quantitatively to NO3 and Cl by O3. Rate data for other chloramines are also presented. The direct reaction of ozone with chlorine accounts for a significant amount of the chlorine and ozone demand found when the two oxidants are used in combination under water works conditions.  相似文献   

2.
Ammonia oxidation by ozone proceeds more rapidly in the presence of bromide ion than in its absence. Unlike the direct ozonation of ammonia, the bromide-catalyzed process is little affected by changes in pH. A reaction scheme is proposed in which bromide is oxidized to HOBr, which then brominates ammonia to produce NH2Br. NH2Br in turn reacts with O3 to form NO3 and also to generate Br, which thus acts as a catalyst. In accordance with the reaction model, zero-order kinetics for ammonia consumption are observed. This work points out once again the importance of Br as a water quality parameter due to its role as a catalyst in both ozonation and chlorination processes in general.  相似文献   

3.
J. Hoign  H. Bader 《Water research》1983,17(2):185-194
Rate constants of reactions of ozone with non-ionized solutes, such as aliphatic alcohols, olefins, chlorosubstituted ethylenes, substituted benzenes and carbohydrates, have been determined from the absolute rates with which ozone reacts in the presence of various concentrations of these compounds in water. They have been tested by comparison with the relative rates by which pairs of these solutes are transformed by ozone. Different experimental methods have been developed to determine such rate constants in the range from 10−2 to 105 M−1 s−1. Interferences between the direct reactions of ozone and reactions due to its preliminary decomposition to secondary oxidants could be eliminated. The kinetics of all the reactions studied are first order with respect to ozone and solute concentration. The rate constants of many types of organic compounds in water are of the same order of magnitude as in organic solvents. Substituted benzenes, however, react in water about 100 times faster. They obey a linear free energy relationship with p = −3.1 when based on δp+ values. Comparisons of rate constants with chemical structures of the reacting groups show that all reactions of ozone are highly selective and electrophilic. The kinetic data allow explanation of the chemical effects of ozone observed in water treatment practice.  相似文献   

4.
This study investigates the oxidation of pharmaceuticals, endocrine disrupting compounds and pesticides during ozonation applied in drinking water treatment. In the first step, second-order rate constants for the reactions of selected compounds with molecular ozone (kO3) were determined in bench-scale experiments at pH 8.10: caffeine (650 ± 22 M−1 s−1), progesterone (601 ± 9 M−1 s−1), medroxyprogesterone (558 ± 9 M−1 s−1), norethindrone (2215 ± 76 M−1 s−1) and levonorgestrel (1427 ± 62 M−1 s−1). Compared to phenolic estrogens (estrone, 17β-estradiol, estriol and 17α-ethinylestradiol), the selected progestogen endocrine disruptors reacted far slower with ozone. In the second part of the study, bench-scale experiments were conducted with surface waters spiked with 16 target compounds to assess their oxidative removal using ozone and determine if bench-scale results would accurately predict full-scale removal data. Overall, the data provided evidence that ozone is effective for removing trace organic contaminants from water with ozone doses typically applied in drinking water treatment. Ozonation removed over 80% of caffeine, pharmaceuticals and endocrine disruptors within the CT value of about 2 mg min L−1. As expected, pesticides were found to be the most recalcitrant compounds to oxidize. Caffeine can be used as an indicator compound to gauge the efficacy of ozone treatment.  相似文献   

5.
The photocatalytic ozonation of sulfamethoxazole (SMT) has been studied in water under different experimental conditions. The effect of gas flow rate, initial concentration of ozone, SMT and TiO2 has been investigated to establish the importance of mass transfer and chemical reaction. Under the conditions investigated the process is chemically controlled. Both, SMT and TOC kinetics have been considered. Fast and slow kinetic regime of ozone reactions have been observed for SMT and TOC oxidation, respectively. Application of different inhibitors allows for the establishment of reaction mechanism involving direct ozonation, direct photolysis, hydroxyl radical reactions and photocatalytic reactions. Rate constants of the direct reaction between ozone and protonated, non-protonated and anionic SMT species have been determined to be 1.71 × 105, 3.24 × 105 and 4.18 × 105 M−1 s−1, respectively. SMT quantum yield at 313 nm was found to be 0.012 moles per Einstein at pH 5 and 0.003 moles per Einstein at pHs 7 and 9. Main contributions to SMT removal were direct ozone reaction, positive hole oxidation and hydroxyl radical reactions. For TOC removal, main contributions were due to positive hole oxidation and hydroxyl radical reactions.  相似文献   

6.
Previous experiments carried out with the laboratory TOD meter Ionics 225 of the DOW Chèmical made it possible (after a high temperature catalytic action) to characterize the stable forms of organic and inorganic carbon and nitrogen (NH4+, NO2, NO3), and the principal cations (Na+, K+, Ca2+, Mg2+) in the course of the total oxygen demand (TOD) measurement.The object of this study is firstly to compare the oxidation capability of different techniques of organic pollution (particularly the COD and TOD) in relation to the constituent elements of the organic matter C, N, P, S, and to calculate the possible interferences of the inorganic compounds at the time of TOD test.These investigations warrant the application of this technique to measure the amount of organic pollution in relatively mineralized conditions (Industrial wastewater, sea-water…). The present publication is concerned more with the study of the transformation of the organic and inorganic sulphur forms (S2−, SO32−. SO42−) in the course of the TOD measurement.The study of the oxidizability of the organic sulphur compound type CxHyOzS, made it possible to establish a specific relation with a ratio of 0–50 mg of organic sulphur l−1, between the oxygen demand of this element [TOD (S)] and its concentration (TOD (S) = 0.97 [S]).These tests showed a partial oxidation of the sulphur to SO2 and SO3 as the literature claimed. On the other hand, the oxidation of the same compounds during the COD tests varies greatly and although it is not possible to establish a correlation between these two measurements, as applies in the case of organic nitrogen, nevertheless these experiments showed a greater reliability of the TOD compared with the COD in the oxidation of organic matter in general. We then carried out experiments on the different mineral forms of sulphur in order to distinguish the possible effects and to recommend simple improvements.A relative study on sulphate ions had been carried out with standard solutions which have the same TOD (the basic TOD is obtained using potassium phthalate acid) and the same increasing concentration of the salt M2SO4 type. The experiments showed that the basic TOD decreases when the concentration of sulphate ions is increased (Fig. 3). Therefore, the interference is negative and taking into consideration the specific oxygen demand of the cation, we can propose an evaluation of this interference (ΔTOD (SO42−) = 0.203 [SO42−]). The same experiments have been conducted with a salt of M2SO3 type and similar results obtained (Fig. 5).The specific interference of the sulphite ion is negative and can be estimated by the following equation (ΔTOD (SO32−) = 0.132 [SO32−]). In both cases, we have to note that the transformation of these inorganic anions occurs between those relative to the theoretical dissociation reaction corresponding to the appearance of the oxide SO2 and SO3. For sulphurous on the contrary, the interference is positive and therefore corresponds to an extra oxygen demand (Fig. 8).The experiments were conducted directly with the M2S salts (M representing K or Na) in aqueous solution.The evaluation of this interference had been made in the consideration of two concentration ranges of the sulphurous ions (0–35 mg S2− l−1): TOD (S2−) = 0.4 [S2−] and (35–100 mg S2− l−1): TOD (S2−) = 1.2 [S2−] − 30.Therefore this study confirms a better oxidation of the organic matter by TOD test in comparison with COD test.But sulphate and sulfite have a negative interference in the TOD measurement, whereas sulphurous is positive.The evaluation model of these interferences allows a correction to be made of the TOD value or to verify TOD measurement of organic pollution obtained by this technique.  相似文献   

7.
Ozonation of pyrene in aqueous solution   总被引:1,自引:0,他引:1  
The reaction of pyrene with ozone was studied in aqueous solution at low (10–200 μg l−1) substrate concentration and with ozone concentrations (5 mg l−1) approximating to those used in potable water treatment. Degree of reaction and the formation of polyaromatic/aromatic reaction products were assessed using a technique of solvent extraction and derivatisation with gas chromatographic (GC), gas chromatographic-mass spectrometric (GC-MS), high performance liquid chromatographic (HPLC) and u.v. spectrometric analysis of extracts. A freeze drying/derivatisation technique with GC and GC-MS analysis was employed for the isolation/identification of short chain polar aliphatic reaction products. Substantial destruction of pyrene was recorded within 1 min of reaction with ozone. Polyaromatic/aromatic compounds did not persist; reaction products are likely to be short chain polar aliphatic compounds. Products of this type were isolated but not identified in the study.  相似文献   

8.
The kinetics of oxidation and disinfection processes during ozonation in a full-scale reactor treating secondary wastewater effluent were investigated for seven ozone doses ranging from 0.21 to 1.24 g O3 g−1 dissolved organic carbon (DOC). Substances reacting fast with ozone, such as diclofenac or carbamazepine (kP,O3 > 104 M−1 s−1), were eliminated within the gas bubble column, except for the lowest ozone dose of 0.21 g O3 g−1 DOC. For this low dose, this could be attributed to short-circuiting within the reactor. Substances with lower ozone reactivity (kP,O3 < 104 M−1 s−1) were only fully eliminated for higher ozone doses.The predictions of micropollutant oxidation based on coupling reactor hydraulics with ozone chemistry and reaction kinetics were up to a factor of 2.5 higher than full-scale measurements. Monte Carlo simulations showed that the observed differences were higher than model uncertainties. The overestimation of micropollutant oxidation was attributed to a protection of micropollutants from ozone attack by the interaction with aquatic colloids. Laboratory-scale batch experiments using wastewater from the same full-scale treatment plant could predict the oxidation of slowly-reacting micropollutants on the full-scale level within a factor of 1.5. The Rct value, the experimentally determined ratio of the concentrations of hydroxyl radicals and ozone, was identified as a major contribution to this difference.An increase in the formation of bromate, a potential human carcinogen, was observed with increasing ozone doses. The final concentration for the highest ozone dose of 1.24 g O3 g−1 DOC was 7.5 μg L−1, which is below the drinking water standard of 10 μg L−1. N-Nitrosodimethylamine (NDMA) formation of up to 15 ng L−1 was observed in the first compartment of the reactor, followed by a slight elimination during sand filtration. Assimilable organic carbon (AOC) increased up to 740 μg AOC L−1, with no clear trend when correlated to the ozone dose, and decreased by up to 50% during post-sand filtration. The disinfection capacity of the ozone reactor was assessed to be 1-4.5 log units in terms of total cell counts (TCC) and 0.5 to 2.5 log units for Escherichia coli (E. coli). Regrowth of up to 2.5 log units during sand filtration was observed for TCC while no regrowth occurred for E. coli. E. coli inactivation could not be accurately predicted by the model approach, most likely due to shielding of E. coli by flocs.  相似文献   

9.
Chlorine and chloramines are volatile compounds which are stripped (“flashed off”) from recirculating cooling water systems by the large volumes of air which flow through the water in the cooling tower. The fraction of a volatile gas, such as hypochlorous acid (HOCl), which is removed by stripping is determined by Henry's constant H for that gas: H = XG/XL, where XG is the mole fraction of the gas in the air and XL is the mole fraction of the gas in the water. We have measured H for HOCl, OCl, NH3, NH2Cl, NHCl2 and NCl3 at 20 and 40°C. We found H = 0.076 for HOCl, compared to 0.71 for NH3, at 20°C. At 40°C, H was about 2.5-fold larger for HOCl. This means that 10–15% of the HOCl is stripped from cooling water on each passage through a typical cooling tower. The measured flashoff of free available chlorine (HOCl + OCl) was markedly pH-sensitive with a pK of 7.5, exactly as expected if HOCl is volatile but OCl is not. The data permit a quantitative understanding of the fate of chlorine in cooling systems. The values of H at 40°C for NH2Cl, NHCl2 and NCl3 were 1.28, 3.76 and 1067. This means that all of the chloramines are quickly stripped in a cooling tower.  相似文献   

10.
Batch metal removal by peat. Kinetics and thermodynamics   总被引:2,自引:0,他引:2  
Peat moss, a natural inexpensive material, is able to play an important rôle in treatment processes of metal-bearing industrial effluents since it adsorbs, complexes or exchanges various metal cations. This paper presents kinetics and thermodynamics of batch metal removal reactions by 50 g l−1 (dry wt) eutrophic or oligotrophic peat particles using Cu2+, Cd2+, Zn2+ and Ni2+ concentrations ranging from 0.01 to 100 mM.Metal cation removal reactions are moderately rapid in 10 mM metal unbuffered solutions: the forward kinetic constant ranges between 0.005 and 0.17 M−1s−1, and equilibrium is reached within about 1 h. Under these conditions of pH (2.2–4.2) and concentrations, apparent binding equilibrium constants were found to range between 2 and 3150 M−1 depending upon the peat origin and the metal cation.In 0–6.5 pH-buffered metal cation solutions, the four cations binding reactions behaved differently demonstrating that metal binding equilibrium constant decrease in the order Ni2+ > Cu2+ > Cd2+ = Zn2+. When pH is higher than 6.7, more than 90% of a 10 mM metal cation solution is removed by 50 g 1−1 peat particles and metal binding capacities equal 200 mmol kg−1 dry wt, whatever the metal nature and the peat origin. Except for nickel cation which is very strongly bound to peat, all metal cations are completely released when pH is fixed below 1.5.  相似文献   

11.
Cadmium contents in the water and the sediment samples collected from the Tama River and several branches were measured. Cadmium (above 0.005mgl−1) was detected in only four of the water samples, while the sediment samples showed cadmium content of 1.0–9.8 μg g−1 dry sediment. Cadmium concentration in the sediments of the main stream was correlated against ignition loss of the samples and it was found that 1 g of ignition loss (organic matter) corresponded to 35 μg of cadmium.The batch adsorption experiment in the laboratory using an aqueous solution of cadmium for 14 sediment samples with a higher concentration of cadmium indicated that the amount adsorbed by the sediment is highly dependent on the ignition loss. The amount adsorbed on unit mass of ignition loss qIL could be correlated by a Freundlich-type equilibrium relation as where C is the equilibrium concentration in the aqueous phase ranging between 7 × 10−3 and 10 mg l−1, while kIL and n are equilibrium constants.The adsorption rate measurement showed that the intraparticle diffusion coefficient of cadmium in the sediment was about 1.1 × 10−6 cm2s−1, which is of a reasonable order of magnitude assuming the pore diffusion mechanism inside the particle.The results suggest that suspended solid particles of high organic content in flowing water contribute significantly to the transport of cadmium along the river.  相似文献   

12.
Determination of ozone in water by the indigo method   总被引:31,自引:0,他引:31  
H. Bader  J. Hoign 《Water research》1981,15(4):449-456
The concentration of aqueous ozone can best be determined by the decolorization of indigo trisulfonate (600 nm, pH below 4) whenever the ozone cannot be measured directly by its u.v. absorption. The method is stoichiometric and extremely fast. The change of absorbance vs ozone added is −2.0 ± 0.1 × 104 M−1 cm−1 and is independent of the concentration of aqueous ozone in the range 0.005–30 mg 1−1. The precision of the analysis is 2% or 3 μg 1−1 for low concentrations if a spectrophotometer or a good filter instrument is used. Visual methods can be used to measure 0.01 mgl−1 ozone. Secondary oxidants produced by ozone in natural water, including hydrogen peroxide or chlorite, do not interfere; chlorine can be masked. The reagent solution is stable for 3 months. The method is recommended for kinetic measurements, for studies of ozonation processes and for visual field methods.  相似文献   

13.
P. Joy  E. Gilbert  S.H. Eberle 《Water research》1980,14(10):1509-1516
The reaction of ozone with p-toluenesulfonic acid (PTA) at initial pH 3 and 12 in aqueous solutions (25°C) has been studied at initial concentration 1 mmol l−1 and ozone dose is 24 mg min−1 1. and 11 mg min−1 1. respectively. The substrate elimination follow a zero order rate law. A 98% p-toluenesulfonic acid reduction requires at least 7 mol O3 per mol PTA, however to remove 100% PTA the consumption of ozone increases to 16 mmol O3 per mmol PTA. At this point a 28% reduction of DOC and a 74% COD reduction was achieved.The PTA decomposition is quicker at higher ozone flow rate, but the specific ozone consumption increases also. As oxidation products the following compounds were identified and their quantitative variations as function of ozonation time were measured: methylglyoxal, acetic acid, formic acid, pyruvic acid, oxalic acid, H2SO4 and H2O2. As byproduct mesoxalic acid was identified. At pH 12 lactic acid as a further oxidation product was observed.Balances of carbon, sulfur and methyl as well of the acid equivalents indicate one or more intermediates with a sulfonic acid group. These intermediates with a proportion of about 20% disappear after 100% PTA elimination. On account of these results a reaction mechanism is discussed.  相似文献   

14.
A procedure for the determination of total Kjeldahl nitrogen in surface fresh waters and organic wastes is described. Organic nitrogen compounds are converted to ammonium sulphate by a catalytic (red mercuric oxide) acid-sulphate digestion. The digest time is 3 h and allows for a maximum of 36 samples, 2 blanks and 2 standards to be processed simultaneously. There is no pH adjustment required following the digestion. Calibration curves covering the ranges (i) 0.5–100 μg NH3---Nl−1 and (ii) 10–1000 μg NH3---Nl−1 were linear within ±2%. The detection limit of the method is 0.5 μg TKNl−1. The concentration range of TKN for which the method is suitable is 0.5 μg Nl−1–40 mg Nl−1. The method displayed a high tolerance to interferences from copper, iron, mercury and hardness. Digest procedure gave a high recovery and reproductibility over a wide range of nitrogen compounds tested.  相似文献   

15.
Rate constants of reactions of ozone with non-ionized solutes, such as aliphatic alcohols, olefins, chlorosubstituted ethylenes, substituted benzenes and carbohydrates, have been determined from the absolute rates with which ozone reacts in the presence of various concentrations of these compounds in water. They have been tested by comparison with the relative rates by which pairs of these solutes are transformed by ozone. Different experimental methods have been developed to determine such rate constants in the range from 10?2 to 105 M?1 s?1. Interferences between the direct reactions of ozone and reactions due to its preliminary decomposition to secondary oxidants could be eliminated. The kinetics of all the reactions studied are first order with respect to ozone and solute concentration. The rate constants of many types of organic compounds in water are of the same order of magnitude as in organic solvents. Substituted benzenes, however, react in water about 100 times faster. They obey a linear free energy relationship with p = ?3.1 when based on δp+ values. Comparisons of rate constants with chemical structures of the reacting groups show that all reactions of ozone are highly selective and electrophilic. The kinetic data allow explanation of the chemical effects of ozone observed in water treatment practice.  相似文献   

16.
J.D. Box 《Water research》1983,17(5):511-525
The methodology associated with the Folin-Ciocalteau phenol reagent was investigated and the performance characteristics of a method using sodium carbonate as the supporting medium were determined. Calibration curves using phenol, tannic acid, or l-tyrosine were linear up to at least 1000 μg l−1. The limit of detection was 6 μg phenol l−1 and the relative standard deviation at 100 μg phenol l−1 was 5.2% and at 1000 μg phenol l−1 was 4.1%. The absorbances obtained with equal amounts of a range of potential standards showed variations when compared with that of phenol: phenol (100%), l-tyrosine (62%), oak gall tannin (58%), tannic acid (48%), chestnut tannin (26%), oak tannin (24%), fulvic acid (5%). The method was applicable to a wide range of monohydric and polyhydric phenolic substances and interferences from inorganic and non-phenolic organic compounds were examined. Interference would be expected above 30 μg S2− l−1, 300 μg Mn(II) l−1, or 400 μg SO32− l−1. Concentrations of iron >2 mg l−1 as Fe(II) or Fe(III) formed the insoluble iron(III) hydroxide which increased the absorbance, but centrifugation could be used to remove this source of interference. Other potential sources of intereference (e.g. reducing agents and certain metabolic products) would be expected to have a negligible effect in unpolluted waters. Methods using diazotised sulphanilic acid or 4-aminoantipyrine (4-AAP) were found to be inferior when applied to natural water samples.  相似文献   

17.
Six heavy metals, copper, cadmium, chromium, lead, uranium and zinc were deposited on cathodes made of a newly developed form of carbon, Reticulated Vitreous Carbon, in a laboratory scale electrochemical reactor. Different metals varied in the extent of their removal with copper depositing 100% at a flow rate of 0.24 cm min−1 in a single pass while it would require a maximum of 20 passes for 100% chromium deposition at a flow rate of 1.8 cm min−1, initial concentrations for both metals being 50 μmol 1−1.Experiments conducted using 0.5 × 10−3 M CuSO4 in 0.5 M Na2SO4 supporting electrolyte resulted in a mass transfer coefficient of the order of 10−3 cm s−1 and a current efficiency of 64% for the electrodeposition of copper at a cell voltage of 4.0V. Because of very high porosity, 97%, high specific surface area, up to 66 cm2 cm−3 for RVC grade 100, and useful electrochemical characteristics, RVC can be advantageously used as electrode material for heavy metal removal from dilute industrial effluents.  相似文献   

18.
Ozonation and u.v. irradiation were evaluated for their abilities to (1) mineralize organic solutes that remained in a biooxidized oil shale process wastewater and (2) effect sufficient structural modification of the remaining biorefractory organic solutes to promote secondary biooxidation. Full-spectrum u.v. radiation (5 h, total dose of 10.2 × 106 J l−1) failed to mineralize or effect the biooxidation of any of the biorefractory carbon. Although ozonation (5 h, total dose of 1.6 g O3 l−1) directly mineralized only 8% of the biorefractory carbon, it enhanced secondary biooxidation; 26% of the refractory carbon was mineralized by an acclimated microbial inoculum. When u.v. irradiation and ozonation were combined simultaneously, a synergistic effect was observed; 3 h of combined treatment (5.9 × 106 J l−1 and 0.83 g O3 l−1) was as effective a pretreatment for secondary biooxidation as was 5 h of ozonation. Sequential application of primary biooxidation, 6 h of combined u.v./ozonation, and secondary biooxidation removed only 59% of the dissolved organic carbon; total reduction of 87% was achieved by using a culture in the secondary biooxidation step that was specifically adapted to this oxidized water. Each time-course sample was analyzed for the distribution of polar and nonpolar organic solutes. In general, ozonation and combined u.v./ozonation mineralized carbon from the nonpolar fraction; biooxidation of formerly refractory carbon was promoted by oxidation of nonpolar carbon to yield more polar or lower-molecular-weight species.  相似文献   

19.
Using bulk deposition, throughfall, stemflow, soil infiltration, runoff water, litterfall data, ion mass budgets were calculated for a catchment area and for mature spruce and pine stands on it. The ions considered in mass balances were Na+, K+, Ca2+, Mg2+, SO42−, NO3, NH4+, HCO3, and H+. Corresponding fluxes for the budgets were calculated as an average for 6 years of studies (1995–2000). Annual input–output balances of all nutrients were positive at the plot-scale, so that leaching into soil water was less than the corresponding deposition load. Deposition of Ca, Mg, Na and S into soil by precipitation exceeded input through litterfall. A proton budget approach shows that the main soil buffering process is retention of sulphate, which clearly exceeds weathering. At the catchment-scale, input–output analysis shows essential output of cations due to weathering from the soil. A distinct change in input–output balance of sulphate during study period was evident. The retention of sulphur has been replaced by its release from the catchment area.  相似文献   

20.
Kinetic of benzotriazole oxidation by ozone and hydroxyl radical   总被引:3,自引:0,他引:3  
Ozonation experiments were performed in batch reactors in order to determine the rate constants for the reaction of molecular ozone and OH radicals with benzotriazole (BT) at different pHs. The first group of ozonation experiments was carried out for the determination of the rate constant for the direct reactions between ozone and BT. Two different kinetic models were used for the determination of kinetic rate constants: (i) the log-reduction of BT with ozone in excess, (ii) the competition kinetic model. The second-order rate constants for BT with molecular ozone were determined to be 36.4 ± 3.8 M−1 s−1 and 18.4 ± 0.8 M−1 s−1 at pH 2 from the two methods respectively. With the competition method, the value at pH 5 was found to be 22.0 ± 2.0 M−1 s−1. In a following stage, the reaction of BT with OH radicals was investigated at pH values ranging from 2 to 10.2. Using a method involving two probe compounds during the ozonation, the second-order rate constants of the BT reaction with hydroxyl radicals were determined. The rate constants were found to vary from 6.2 × 109 M−1 s−1 at pH 10.2 to 1.7 × 1010 M−1 s−1 at pH 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号