首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Genomic prediction is widely used to select candidates for breeding. Size and composition of the reference population are important factors influencing prediction accuracy. In Holstein dairy cattle, large reference populations are used, but this is difficult to achieve in numerically small breeds and for traits that are not routinely recorded. The prediction accuracy is usually estimated using cross-validation, requiring the full data set. It would be useful to have a method to predict the benefit of multibreed reference populations that does not require the availability of the full data set. Our objective was to study the effect of the size and breed composition of the reference population on the accuracy of genomic prediction using genomic BLUP and Bayes R. We also examined the effect of trait heritability and validation breed on prediction accuracy. Using these empirical results, we investigated the use of a formula to predict the effect of the size and composition of the reference population on the accuracy of genomic prediction. Phenotypes were simulated in a data set containing real genotypes of imputed sequence variants for 22,752 dairy bulls and cows, including Holstein, Jersey, Red Holstein, and Australian Red cattle. Different reference populations were constructed, varying in size and composition, to study within-breed, multibreed, and across-breed prediction. Phenotypes were simulated varying in heritability, number of chromosomes, and number of quantitative trait loci. Genomic prediction was carried out using genomic BLUP and Bayes R. We used either the genomic relationship matrix (GRM) to estimate the number of independent chromosomal segments and subsequently to predict accuracy, or the accuracies obtained from single-breed reference populations to predict the accuracies of larger or multibreed reference populations. Using the GRM overestimated the accuracy; this overestimation was likely due to close relationships among some of the reference animals. Consequently, the GRM could not be used to predict the accuracy of genomic prediction reliably. However, a method using the prediction accuracies obtained by cross-validation using a small, single-breed reference population predicted the accuracy using a multibreed reference population well and slightly overestimated the accuracy for a larger reference population of the same breed, but gave a reasonably close estimate of the accuracy for a multibreed reference population. This method could be useful for making decisions regarding the size and composition of the reference population.  相似文献   

2.
Different approaches of calculating genomic measures of relationship were explored and compared with pedigree relationships (A) within and across base breeds in a crossbreed population, using genotypes for 38,194 loci of 4,106 Nordic Red dairy cattle. Four genomic relationship matrices (G) were calculated using either observed allele frequencies (AF) across breeds or within-breed AF. The G matrices were compared separately when the AF were estimated in the observed and in the base population. Breedwise AF in the current and base population were estimated using linear regression models of individual genotypes on breed composition. Different G matrices were further used to predict direct estimated genomic values using a genomic BLUP model. Higher variability existed in the diagonal elements of G across breeds (standard deviation = 0.06, on average) compared with A (0.01). The use of simple observed AF across base breeds to compute G increased coefficients for individuals in distantly related populations. Estimated breedwise AF reduced differences in coefficients similarly within and across populations. The variability of the current adjusted G matrix decreased from 0.055 to 0.035 when breedwise AF were estimated from the base breed population. The direct estimated genomic values and their validation reliabilities were, however, unaffected by AF used to compute G when estimated with a genomic BLUP model, due to inclusion of breed means in the model. In multibreed populations, G adjusted with breedwise AF from the founder population may provide more consistency among relationship coefficients between genotyped and ungenotyped individuals in an across-breed single-step evaluation.  相似文献   

3.
Three breeds (Fleckvieh, Holstein, and Jersey) were included in a reference population, separately and together, to assess the accuracy of prediction of genomic breeding values in single-breed validation populations. The accuracy of genomic selection was defined as the correlation between estimated breeding values, calculated using phenotypic data, and genomic breeding values. The Holstein and Jersey populations were from Australia, whereas the Fleckvieh population (dual-purpose Simmental) was from Austria and Germany. Both a BLUP with a multi-breed genomic relationship matrix (GBLUP) and a Bayesian method (BayesA) were used to derive the prediction equations. The hypothesis tested was that having a multi-breed reference population increased the accuracy of genomic selection. Minimal advantage existed of either GBLUP or BayesA multi-breed genomic evaluations over single-breed evaluations. However, when the goal was to predict genomic breeding values for a breed with no individuals in the reference population, using 2 other breeds in the reference was generally better than only 1 breed.  相似文献   

4.
Marker sets used in US dairy genomic predictions were previously expanded by including high-density (HD) or sequence markers with the largest effects for Holstein breed only. Other non-Holstein breeds lacked enough HD genotyped animals to be used as a reference population at that time, and thus were not included in the genomic prediction. Recently, numbers of non-Holstein breeds genotyped using HD panels reached an acceptable level for imputation and marker selection, allowing HD genomic prediction and HD marker selection for Holstein plus 4 other breeds. Genotypes for 351,461 Holsteins, 347,570 Jerseys, 42,346 Brown Swiss, 9,364 Ayrshires (including Red dairy cattle), and 4,599 Guernseys were imputed to the HD marker list that included 643,059 SNP. The separate HD reference populations included Illumina BovineHD (San Diego, CA) genotypes for 4,012 Holsteins, 407 Jerseys, 181 Brown Swiss, 527 Ayrshires, and 147 Guernseys. The 643,059 variants included the HD SNP and all 79,254 (80K) genetic markers and QTL used in routine national genomic evaluations. Before imputation, approximately 91 to 97% of genotypes were unknown for each breed; after imputation, 1.1% of Holstein, 3.2% of Jersey, 6.7% of Brown Swiss, 4.8% of Ayrshire, and 4.2% of Guernsey alleles remained unknown due to lower density haplotypes that had no matching HD haplotype. The higher remaining missing rates in non-Holstein breeds are mainly due to fewer HD genotyped animals in the imputation reference populations. Allele effects for up to 39 traits were estimated separately within each breed using phenotypic reference populations that included up to 6,157 Jersey males and 110,130 Jersey females. Correlations of HD with 80K genomic predictions for young animals averaged 0.986, 0.989, 0.985, 0.992, and 0.978 for Jersey, Ayrshire, Brown Swiss, Guernsey, and Holstein breeds, respectively. Correlations were highest for yield traits (about 0.991) and lowest for foot angle and rear legs–side view (0.981and 0.982, respectively). Some HD effects were more than twice as large as the largest 80K SNP effect, and HD markers had larger effects than nearby 80K markers for many breed-trait combinations. Previous studies selected and included markers with large effects for Holstein traits; the newly selected HD markers should also improve non-Holstein and crossbred genomic predictions and were added to official US genomic predictions in April 2020.  相似文献   

5.
In dairy cattle breeding, there is a clear trend toward the use of only a few high-yielding breeds. One main reason is that efficient breeding programs require a certain population size. Since some numerically small breeds are well known for their functional traits, they might be an interesting crossing partner for high-yielding breeds with the aim to utilize heterosis. This simulation study investigated the transition period of a small cattle population for the implementation of genomic selection and rotational crossbreeding with a high-yielding breed. Real SNP chip genotype data from the numerically small red dairy breed Angler and the high-yielding breed Holstein Friesian were used to simulate the base generations, from which rotational crossbreeding was conducted for 10 generations. A polygenic trait with many quantitative trait loci with additive and directional dominance effects was simulated. Different selection methods for Angler sires (purebred performance, crossbred performance, and weighted purebred-crossbred performance) and different sizes and structures of the reference population (Angler, crossbred animals, and Angler plus crossbred animals) were considered. The results showed that the implementation of a genomic rotational crossbreeding scheme is an appealing option to promote the numerically small Angler breed. The growing reference population consisting of Angler and crossbred individuals maximized the genetic gain for Angler and the performance level for the crossbred individuals. Selection for purebred performance, crossbred performance, or a weighted combination of both hardly affected the results, and differences between selection scenarios were observed only in the long term with decreasing purebred-crossbred correlations.  相似文献   

6.
Single-breed genomic selection (GS) based on medium single nucleotide polymorphism (SNP) density (~50,000; 50K) is now routinely implemented in several large cattle breeds. However, building large enough reference populations remains a challenge for many medium or small breeds. The high-density BovineHD BeadChip (HD chip; Illumina Inc., San Diego, CA) containing 777,609 SNP developed in 2010 is characterized by short-distance linkage disequilibrium expected to be maintained across breeds. Therefore, combining reference populations can be envisioned. A population of 1,869 influential ancestors from 3 dairy breeds (Holstein, Montbéliarde, and Normande) was genotyped with the HD chip. Using this sample, 50K genotypes were imputed within breed to high-density genotypes, leading to a large HD reference population. This population was used to develop a multi-breed genomic evaluation. The goal of this paper was to investigate the gain of multi-breed genomic evaluation for a small breed. The advantage of using a large breed (Normande in the present study) to mimic a small breed is the large potential validation population to compare alternative genomic selection approaches more reliably. In the Normande breed, 3 training sets were defined with 1,597, 404, and 198 bulls, and a unique validation set included the 394 youngest bulls. For each training set, estimated breeding values (EBV) were computed using pedigree-based BLUP, single-breed BayesC, or multi-breed BayesC for which the reference population was formed by any of the Normande training data sets and 4,989 Holstein and 1,788 Montbéliarde bulls. Phenotypes were standardized by within-breed genetic standard deviation, the proportion of polygenic variance was set to 30%, and the estimated number of SNP with a nonzero effect was about 7,000. The 2 genomic selection (GS) approaches were performed using either the 50K or HD genotypes. The correlations between EBV and observed daughter yield deviations (DYD) were computed for 6 traits and using the different prediction approaches. Compared with pedigree-based BLUP, the average gain in accuracy with GS in small populations was 0.057 for the single-breed and 0.086 for multi-breed approach. This gain was up to 0.193 and 0.209, respectively, with the large reference population. Improvement of EBV prediction due to the multi-breed evaluation was higher for animals not closely related to the reference population. In the case of a breed with a small reference population size, the increase in correlation due to multi-breed GS was 0.141 for bulls without their sire in reference population compared with 0.016 for bulls with their sire in reference population. These results demonstrate that multi-breed GS can contribute to increase genomic evaluation accuracy in small breeds.  相似文献   

7.
《Journal of dairy science》2022,105(6):5178-5191
Genomic predictions have been applied for dairy cattle for more than a decade with great success, but genomic estimated breeding values (GEBV) are not widely available for crossbred dairy cows. The large reference populations already in place for genomic evaluations of many pure breeds makes it interesting to use the accurate solutions, in particular the estimated marker effects, from these evaluations for calculation of GEBV for crossbred heifers and cows. Effects of marker alleles in crossbred animals can depend on breed origin of the alleles (BOA). Therefore, our aim was to investigate if reliable GEBV for crossbred dairy cows can be obtained by combining estimated marker effects from purebred evaluations based on BOA. We used data on 5,467 Danish crossbred dairy cows with contributions from Holstein, Jersey, and Red Dairy Cattle breeds. We assessed BOA assignment on their genotypes and found that we could assign 99.3% of the alleles to a definite breed of origin. We compared GEBV for 2 traits, protein yield and interval between first and last insemination of cows, with 2 models that both combine estimated marker effects from the genomic evaluations of the pure breeds: a breed of origin model that accounts for BOA and a breed proportion model that only accounts for genomic breed proportions in the crossbred animals. We accounted for the difference in level between the purebred evaluations by including intercepts in the models based on phenotypic averages. The predictive ability for protein yield was significantly higher from the breed of origin model, 0.45 compared with 0.43 from the breed proportion model. Furthermore, for the breed proportion model, the GEBVs had level bias, which made comparison across groups with different breed composition skewed. We therefore concluded that reliable genomic predictions for crossbred dairy cows can be obtained by combining estimated marker effects from the genomic evaluations of purebreds using a model that accounts for BOA.  相似文献   

8.
Milk fatty acid (FA) composition was compared among 4 cattle breeds in the Netherlands: Dutch Friesian (DF; 47 animals/3 farms), Meuse-Rhine-Yssel (MRY; 52/3), Groningen White Headed (GWH; 45/3), and Jersey (JER; 46/3). Each cow was sampled once between December 2008 and March 2009 during the indoor housing season, and samples were analyzed using gas chromatography. Significant breed differences were found for all traits including fat and protein contents, 13 major individual FA, 9 groups of FA, and 5 indices. The saturated fatty acid proportion, which is supposed to be unfavorable for human health, was smaller for GWH (68.9%) compared with DF (74.1%), MRY (72.3%), and JER (74.3%) breeds. The proportion of conjugated linoleic acid and the unsaturation index, which are associated positively with human health, were both highest for GWH. Differences in milk fat composition can be used in strategies to breed for milk with a FA profile more favorable for human health. Our results support the relevance of safeguarding the local Dutch breeds.  相似文献   

9.
《Journal of dairy science》2022,105(11):8956-8971
Maintaining a genetically diverse dairy cattle population is critical to preserving adaptability to future breeding goals and avoiding declines in fitness. This study characterized the genomic landscape of autozygosity and assessed trends in genetic diversity in 5 breeds of US dairy cattle. We analyzed a sizable genomic data set containing 4,173,679 pedigreed and genotyped animals of the Ayrshire, Brown Swiss, Guernsey, Holstein, and Jersey breeds. Runs of homozygosity (ROH) of 2 Mb or longer in length were identified in each animal. The within-breed means for number and the combined length of ROH were highest in Jerseys (62.66 ± 8.29 ROH and 426.24 ± 83.40 Mb, respectively; mean ± SD) and lowest in Ayrshires (37.24 ± 8.27 ROH and 265.05 ± 85.00 Mb, respectively). Short ROH were the most abundant, but moderate to large ROH made up the largest proportion of genome autozygosity in all breeds. In addition, we identified ROH islands in each breed. This revealed selection patterns for milk production, productive life, health, and reproduction in most breeds and evidence for parallel selective pressure for loci on chromosome 6 between Ayrshire and Brown Swiss and for loci on chromosome 20 between Holstein and Jersey. We calculated inbreeding coefficients using 3 different approaches, pedigree-based (FPED), marker-based using a genomic relationship matrix (FGRM), and segment-based using ROH (FROH). The average inbreeding coefficient ranged from 0.06 in Ayrshires and Brown Swiss to 0.08 in Jerseys and Holsteins using FPED, from 0.22 in Holsteins to 0.29 in Guernsey and Jerseys using FGRM, and from 0.11 in Ayrshires to 0.17 in Jerseys using FROH. In addition, the effective population size at past generations (5–100 generations ago), the yearly rate of inbreeding, and the effective population size in 3 recent periods (2000–2009, 2010–2014, and 2015–2018) were determined in each breed to ascertain current and historical trends of genetic diversity. We found a historical trend of decreasing effective population size in the last 100 generations in all breeds and breed differences in the effect of the recent implementation of genomic selection on inbreeding accumulation.  相似文献   

10.
《Journal of dairy science》2023,106(8):5570-5581
Genomic selection was deployed in Lacaune dairy breed in 2015. Lacaune population split in 1972 into 2 breeding companies with associated flocks, and there have been very few exchanges of animals between the subpopulations, leading to divergence of the 2 subpopulations. In spite of that, there is a joint genomic prediction. The objective of this study is to understand how this structuring affects prediction accuracy. We analyzed all the data available from Lacaune breeding program for milk yield: around 6 million phenotypes, 2 million animals in the pedigree and more than 29,000 genotyped animals, including 3,434 and 2,868 AI rams for each company. To consider missing pedigree, we set up genetic groups using the theory of metafounders. First, we studied the pedigree and genomic structures of the 2 subpopulations calculating Fst, evolution of average pedigree relationships across time and principal components analysis of genomic relationships. In a second part, we compared the reliability between different scenarios: an evaluation with a single reference population (Alone), an evaluation with a joint reference population (Together) and an evaluation of one subpopulation based on the reference population of the other group (Indirect). The low Fst value (0.02) reveals that the 2 subpopulations are still genetically close. Nevertheless, a low and constant average relationship between the animals of the 2 subpopulations confirms the absence of recent connections between them. We can see with principal component analysis results that even if they are close, they diverge over time. Finally, we observe small gains in accuracy of Together versus Alone, in spite of whereas doubling the reference population size in Together. These gains vary across years and subpopulations: less than 0.08 (0.46 to 0.54; ratio of accuracy for the partial and whole evaluations—corresponding to the greatest change in this ratio for breeding company 1, observed for the cohort 2016) for one subpopulation and between 0.03 (0.55 to 0.58) and 0.17 (0.48 to 0.65) for the other. To conclude, the 2 subpopulations remain close enough genetically so that their combined evaluation is advantageous, even if only slightly.  相似文献   

11.
《Journal of dairy science》2022,105(2):1014-1027
Several factors influence the composition of milk. Among these, genetic variation within and between cattle breeds influences milk protein composition, protein heterogeneity, and their posttranslational modifications. Such variations may further influence technological properties, which are of importance for the utilization of milk into dairy products. Furthermore, these potential variations may also facilitate the production of differentiated products (e.g., related to specific breeds or specific genetic variants). The objective of this study was to investigate the genetic variation and relative protein composition of the major proteins in milk from 6 native Norwegian dairy breeds representing heterogeneity in geographical origin, using the modern Norwegian breed, Norwegian Red, as reference. In total, milk samples from 144 individual cows were collected and subjected to liquid chromatography-electrospray ionization/mass spectrometry–based proteomics for identification of genetic and posttranslational modification isoforms of the 4 caseins (αS1-CN, αS2-CN, β-CN, κ-CN) and the 2 most abundant whey proteins (α-lactalbumin and β-lactoglobulin). Relative quantification of these proteins and their major isoforms, including phosphorylations of αS1-CN and glycosylation of κ-CN, were determined based on UV absorbance. The presence and frequency of genetic variants of the breeds were found to be very diverse and it was possible to identify rare variants of the CN, which, to our knowledge, have not been identified in these breeds before. Thus, αS1-CN variant D was identified in low frequency in 3 of the 6 native Norwegian breeds. In general, αS1-CN was found to be quite diverse between the native breeds, and the even less frequent A and C variants were furthermore detected in 1 and 5 of the native breeds, respectively. The αS1-CN variant C was also identified in samples from the Norwegian Red cattle. The variant E of κ-CN was identified in 2 of the native Norwegian breeds. Another interesting finding was the identification of αS2-CN variant D, which was found in relatively high frequencies in the native breeds. Diversity in more common protein genetic variants were furthermore observed in the protein profiles of the native breeds compared with milk from the high-yielding Norwegian Reds, probably reflecting the more diverse genetic background between the native breeds.  相似文献   

12.
Genomic selection requires a large reference population to accurately estimate single nucleotide polymorphism (SNP) effects. In some Canadian dairy breeds, the available reference populations are not large enough for accurate estimation of SNP effects for traits of interest. If marker phase is highly consistent across multiple breeds, it is theoretically possible to increase the accuracy of genomic prediction for one or all breeds by pooling several breeds into a common reference population. This study investigated the extent of linkage disequilibrium (LD) in 5 major dairy breeds using a 50,000 (50K) SNP panel and 3 of the same breeds using the 777,000 (777K) SNP panel. Correlation of pair-wise SNP phase was also investigated on both panels. The level of LD was measured using the squared correlation of alleles at 2 loci (r2), and the consistency of SNP gametic phases was correlated using the signed square root of these values. Because of the high cost of the 777K panel, the accuracy of imputation from lower density marker panels [6,000 (6K) or 50K] was examined both within breed and using a multi-breed reference population in Holstein, Ayrshire, and Guernsey. Imputation was carried out using FImpute V2.2 and Beagle 3.3.2 software. Imputation accuracies were then calculated as both the proportion of correct SNP filled in (concordance rate) and allelic R2. Computation time was also explored to determine the efficiency of the different algorithms for imputation. Analysis showed that LD values >0.2 were found in all breeds at distances at or shorter than the average adjacent pair-wise distance between SNP on the 50K panel. Correlations of r-values, however, did not reach high levels (<0.9) at these distances. High correlation values of SNP phase between breeds were observed (>0.94) when the average pair-wise distances using the 777K SNP panel were examined. High concordance rate (0.968–0.995) and allelic R2 (0.946–0.991) were found for all breeds when imputation was carried out with FImpute from 50K to 777K. Imputation accuracy for Guernsey and Ayrshire was slightly lower when using the imputation method in Beagle. Computing time was significantly greater when using Beagle software, with all comparable procedures being 9 to 13 times less efficient, in terms of time, compared with FImpute. These findings suggest that use of a multi-breed reference population might increase prediction accuracy using the 777K SNP panel and that 777K genotypes can be efficiently and effectively imputed using the lower density 50K SNP panel.  相似文献   

13.
The prediction of traditional goat milk coagulation properties (MCP) and curd firmness over time (CFt) parameters via Fourier-transform infrared (FTIR) spectroscopy can be of significant economic interest to the dairy industry and can contribute to the breeding objectives for the genetic improvement of dairy goat breeds. Therefore, the aims of this study were to (1) explore the variability of milk FTIR spectra from 4 goat breeds (Camosciata delle Alpi, Murciano-Granadina, Maltese, and Sarda), and to assess the possible discriminant power of milk FTIR spectra among breeds, (2) assess the viability to predict coagulation traits by using milk FTIR spectra, and (3) quantify the effect of the breed on the prediction accuracy of MCP and CFt parameters. In total, 611 individual goat milk samples were used. Analysis of variance of measured MCP and CFt parameters was carried out using a mixed model including the farm and pendulum as random factors, and breed, parity, and days in milk as fixed factors. Milk spectra for each goat were collected over the spectral range from wavenumber 5,011 to 925 × cm?1. Discriminant analysis of principal components was used to assess the ability of FTIR spectra to identify breed of origin. A Bayesian model was used to calibrate equations for each coagulation trait. The accuracy of the model and the prediction equation was assessed by cross-validation (CRV; 80% training and 20% testing set) and stratified CRV (SCV; 3 breeds in the training set, one breed in the testing set) procedures. Prediction accuracy was assessed by using coefficient of determination of validation (R2VAL), the root mean square error of validation (RMSEVAL), and the ratio performance deviation. Moreover, measured and FTIR predicted traits were compared in the SCV procedure by assessing their least squares means for the breed effect, Pearson correlations, and variance heteroscedasticity. Results showed the feasibility of using FTIR spectra and multivariate analyses to correctly assign milk samples to their breeds of origin. The R2VAL values obtained with the CRV procedure were moderate to high for the majority of coagulation traits, with RMSEVAL and ratio performance deviation values increasing as the coagulation process progresses from rennet addition. Prediction accuracy obtained with the SCV were strongly influenced by the breed, presenting general low values restricting a practical application. In addition, the low Pearson correlation coefficients of Sarda breed for all the traits analyzed, and the heteroscedastic variances of Camosciata delle Alpi, Murciano-Granadina, and Maltese breeds, further indicated that it is fundamental to consider the differences existing among breeds for the prediction of milk coagulation traits.  相似文献   

14.
《Journal of dairy science》2022,105(3):2408-2425
Reggiana and Modenese are autochthonous cattle breeds, reared in the North of Italy, that can be mainly distinguished for their standard coat color (Reggiana is red, whereas Modenese is white with some pale gray shades). Almost all milk produced by these breeds is transformed into 2 mono-breed branded Parmigiano-Reggiano cheeses, from which farmers receive the economic incomes needed for the sustainable conservation of these animal genetic resources. After the setting up of their herd books in 1960s, these breeds experienced a strong reduction in the population size that was subsequently reverted starting in the 1990s (Reggiana) or more recently (Modenese) reaching at present a total of about 2,800 and 500 registered cows, respectively. Due to the small population size of these breeds, inbreeding is a very important cause of concern for their conservation programs. Inbreeding is traditionally estimated using pedigree data, which are summarized in an inbreeding coefficient calculated at the individual level (FPED). However, incompleteness of pedigree information and registration errors can affect the effectiveness of conservation strategies. High-throughput SNP genotyping platforms allow investigation of inbreeding using genome information that can overcome the limits of pedigree data. Several approaches have been proposed to estimate genomic inbreeding, with the use of runs of homozygosity (ROH) considered to be the more appropriate. In this study, several pedigree and genomic inbreeding parameters, calculated using the whole herd book populations or considering genotyping information (GeneSeek GGP Bovine 150K) from 1,684 Reggiana cattle and 323 Modenese cattle, were compared. Average inbreeding values per year were used to calculate effective population size. Reggiana breed had generally lower genomic inbreeding values than Modenese breed. The low correlation between pedigree-based and genomic-based parameters (ranging from 0.187 to 0.195 and 0.319 to 0.323 in the Reggiana and Modenese breeds, respectively) reflected the common problems of local populations in which pedigree records are not complete. The high proportion of short ROH over the total number of ROH indicates no major recent inbreeding events in both breeds. ROH islands spread over the genome of the 2 breeds (15 in Reggiana and 14 in Modenese) identified several signatures of selection. Some of these included genes affecting milk production traits, stature, body conformation traits (with a main ROH island in both breeds on BTA6 containing the ABCG2, NCAPG, and LCORL genes) and coat color (on BTA13 in Modenese containing the ASIP gene). In conclusion, this work provides an extensive comparative analysis of pedigree and genomic inbreeding parameters and relevant genomic information that will be useful in the conservation strategies of these 2 iconic local cattle breeds.  相似文献   

15.
Genomic selection using dense markers covering the whole genome is a tool for the genetic improvement of livestock and is revolutionizing the breeding system in dairy cattle. Progeny-tested bulls have been used to form reference populations in almost all countries where genomic selection has been implemented. In this study, the accuracy of genomic prediction when cows are used to form the reference population was investigated. The reference population consisted of 3,087 cows. All individuals were genotyped with Illumina BovineSNP50. After genotype imputation and editing, 48,676 single nucleotide polymorphisms were available for analysis. Two methods, genomic BLUP (GBLUP) and BayesB, were used to render genomic estimated breeding values (GEBV) for 5 milk production traits. Accuracies of GEBV were assessed in 3 ways: rGEBV,EBV (the correlation between GEBV and conventional EBV) in 67 progeny-tested bulls, rGEBV,EBV from a 5-fold cross validation in the 3,087 cow reference population, and the theoretical accuracy (for GBLUP) calculated in the same way as for conventional BLUP. The results showed that using GBLUP, the rGEBV,EBV and theoretical accuracy of genomic prediction in Chinese Holstein ranged from 0.59 to 0.76 and 0.70 to 0.80, respectively, which was 0.13 to 0.30 and 0.23 to 0.33 higher than the accuracies of conventional pedigree index, respectively. The results indicate that, as an alternative, genomic selection using cows in the reference population is feasible.  相似文献   

16.
National gene bank collections for Holstein Friesian (HF) dairy cattle were set up in the 1990s. In this study, we assessed the value of bulls from the Dutch HF germplasm collection, also known as cryobank bulls, to increase genetic variability and improve genetic merit in the current bull population (bulls born in 2010–2015). Genetic variability was defined as 1 minus the mean genomic similarity (SIMSNP) or as 1 minus the mean pedigree-based kinship (fPED). Genetic merit was defined as the mean estimated breeding value for the total merit index or for 1 of 3 subindices (yield, fertility, and udder health). Using optimal contribution selection, we minimized relatedness (maximized variability) or maximized genetic merit at restricted levels of relatedness. We compared breeding schemes with only bulls from 2010 to 2015 with schemes in which cryobank bulls were also included. When we minimized relatedness, inclusion of genotyped cryobank bulls decreased mean SIMSNP by 0.7% and inclusion of both genotyped and nongenotyped cryobank bulls decreased mean fPED by 2.6% (in absolute terms). When we maximized merit at restricted levels of relatedness, inclusion of cryobank bulls provided additional merit at any level of mean SIMSNP or mean fPED except for the total merit index at high levels of mean SIMSNP. Additional merit from cryobank bulls depended on (1) the relative emphasis on genetic variability and (2) the selection criterion. Additional merit was higher when more emphasis was put on genetic variability. For fertility, for example, it was 1.74 SD at a mean SIMSNP restriction of 64.5% and 0.37 SD at a mean SIMSNP restriction of 67.5%. Additional merit was low to nonexistent for the total merit index and higher for the subindices, especially for fertility. At a mean SIMSNP of 64.5%, for example, it was 0.60 SD for the total merit index and 1.74 SD for fertility. In conclusion, Dutch HF cryobank bulls can be used to increase genetic variability and improve genetic merit in the current population, although their value is very limited when selecting for the current total merit index. Anticipating changes in the breeding goal in the future, the germplasm collection is a valuable resource for commercial breeding populations.  相似文献   

17.
A maximum likelihood method is presented to estimate the fraction of animals misclassified and breed effects for milk protein gene frequencies based on crossbred data. A simulation study indicates that the method provides estimates of gene frequencies that agree closely with the true values. Gene frequencies in the Dutch Black and White and the Dutch Red and White crossbred populations, based on data on 10,151 and 580 animals respectively, were estimated. Dutch Friesian and Holstein-Friesian breeds differ in gene frequencies for beta-casein and beta-lactoglobulin. Estimates for fractions misclassified are zero for alpha s1-casein, .09 for beta-casein and beta-lactoglobulin, and .12 for kappa-casein. Differences between Dutch Red and Whites and Red Holstein-Friesian breeds are small, and estimates for fractions misclassified are high but have high approximate standard errors. Compared with the Black and White breeds, the Red and Whites have a high kappa-casein B gene frequency.  相似文献   

18.
《Journal of dairy science》2019,102(8):7237-7247
Relatedness between reference and test animals has an important effect on the reliability of genomic prediction for test animals. Because genomic prediction has been widely applied in practical cattle breeding and bulls have been selected according to genomic breeding value without progeny testing, the sires or grandsires of candidates might not have phenotypic information and might not be in the reference population when the candidates are selected. The objective of this study was to investigate the decreasing trend of the reliability of genomic prediction given distant reference populations, using genomic best linear unbiased prediction (GBLUP) and Bayesian variable selection models with or without including the quantitative trait locus (QTL) markers detected from sequencing data. The data used in this study consisted of 22,242 bulls genotyped using the 54K SNP array from EuroGenomics. Among them, 1,444 Danish bulls born from 2006 to 2010 were selected as test animals. Different reference populations with varying relationships to test animals were created according to pedigree-based relationships. The reference individuals having a relationship with one or more test animals higher than 0.4 (scenario ρ < 0.4), 0.2 (ρ < 0.2), or 0.1 (ρ < 0.1, where ρ = relationship coefficient) were removed from reference sets; these represented the distance between reference and test animals being 2 generations, 3 generations, and 4 generations, respectively. Imputed whole-genome sequencing data of bulls from Denmark were used to conduct a genome-wide association study (GWAS). A small number of significant variants (QTL markers) from the GWAS were added to the array data. To compare the effects of different models, the basic GBLUP model, a Bayesian selection variable model, a GBLUP model with 2 components of genetic effects, and a Bayesian model with pooled array data and QTL markers were used for estimating genomic estimated breeding values (GEBV) of test animals. The reliability of genomic prediction decreased when the test animals were more generations away from the reference population. The reliability of genomic prediction was 0.461 for 1 generation away and 0.396 for 3 generations away, with the same number of individuals in the reference set, using a GBLUP model with chip markers only. The results showed that using the Bayesian method and QTL markers improved the reliability of genomic prediction in all scenarios of relationship between test and reference animals, in a range of 1.3% and 65.1% (4 generations away with only 841 individuals in the reference set). However, most gains were for predictions of milk yield and fat yield. There was little improvement for predictions of protein yield and mastitis, and no improvement for prediction of fertility, except for scenario ρ < 0.1, in which there was a large improvement for predictions of all traits. On the other hand, models including more than 10% polygenic effect decreased prediction reliability when the relationship between test and reference animals was distant.  相似文献   

19.
《Journal of dairy science》2017,100(7):5479-5490
Genomic selection may accelerate genetic progress in breeding programs of indicine breeds when compared with traditional selection methods. We present results of genomic predictions in Gyr (Bos indicus) dairy cattle of Brazil for milk yield (MY), fat yield (FY), protein yield (PY), and age at first calving using information from bulls and cows. Four different single nucleotide polymorphism (SNP) chips were studied. Additionally, the effect of the use of imputed data on genomic prediction accuracy was studied. A total of 474 bulls and 1,688 cows were genotyped with the Illumina BovineHD (HD; San Diego, CA) and BovineSNP50 (50K) chip, respectively. Genotypes of cows were imputed to HD using FImpute v2.2. After quality check of data, 496,606 markers remained. The HD markers present on the GeneSeek SGGP-20Ki (15,727; Lincoln, NE), 50K (22,152), and GeneSeek GGP-75Ki (65,018) were subset and used to assess the effect of lower SNP density on accuracy of prediction. Deregressed breeding values were used as pseudophenotypes for model training. Data were split into reference and validation to mimic a forward prediction scheme. The reference population consisted of animals whose birth year was ≤2004 and consisted of either only bulls (TR1) or a combination of bulls and dams (TR2), whereas the validation set consisted of younger bulls (born after 2004). Genomic BLUP was used to estimate genomic breeding values (GEBV) and reliability of GEBV (R2PEV) was based on the prediction error variance approach. Reliability of GEBV ranged from ∼0.46 (FY and PY) to 0.56 (MY) with TR1 and from 0.51 (PY) to 0.65 (MY) with TR2. When averaged across all traits, R2PEV were substantially higher (R2PEV of TR1 = 0.50 and TR2 = 0.57) compared with reliabilities of parent averages (0.35) computed from pedigree data and based on diagonals of the coefficient matrix (prediction error variance approach). Reliability was similar for all the 4 marker panels using either TR1 or TR2, except that imputed HD cow data set led to an inflation of reliability. Reliability of GEBV could be increased by enlarging the limited bull reference population with cow information. A reduced panel of ∼15K markers resulted in reliabilities similar to using HD markers. Reliability of GEBV could be increased by enlarging the limited bull reference population with cow information.  相似文献   

20.
Achieving accurate genomic estimated breeding values for dairy cattle requires a very large reference population of genotyped and phenotyped individuals. Assembling such reference populations has been achieved for breeds such as Holstein, but is challenging for breeds with fewer individuals. An alternative is to use a multi-breed reference population, such that smaller breeds gain some advantage in accuracy of genomic estimated breeding values (GEBV) from information from larger breeds. However, this requires that marker-quantitative trait loci associations persist across breeds. Here, we assessed the gain in accuracy of GEBV in Jersey cattle as a result of using a combined Holstein and Jersey reference population, with either 39,745 or 624,213 single nucleotide polymorphism (SNP) markers. The surrogate used for accuracy was the correlation of GEBV with daughter trait deviations in a validation population. Two methods were used to predict breeding values, either a genomic BLUP (GBLUP_mod), or a new method, BayesR, which used a mixture of normal distributions as the prior for SNP effects, including one distribution that set SNP effects to zero. The GBLUP_mod method scaled both the genomic relationship matrix and the additive relationship matrix to a base at the time the breeds diverged, and regressed the genomic relationship matrix to account for sampling errors in estimating relationship coefficients due to a finite number of markers, before combining the 2 matrices. Although these modifications did result in less biased breeding values for Jerseys compared with an unmodified genomic relationship matrix, BayesR gave the highest accuracies of GEBV for the 3 traits investigated (milk yield, fat yield, and protein yield), with an average increase in accuracy compared with GBLUP_mod across the 3 traits of 0.05 for both Jerseys and Holsteins. The advantage was limited for either Jerseys or Holsteins in using 624,213 SNP rather than 39,745 SNP (0.01 for Holsteins and 0.03 for Jerseys, averaged across traits). Even this limited and nonsignificant advantage was only observed when BayesR was used. An alternative panel, which extracted the SNP in the transcribed part of the bovine genome from the 624,213 SNP panel (to give 58,532 SNP), performed better, with an increase in accuracy of 0.03 for Jerseys across traits. This panel captures much of the increased genomic content of the 624,213 SNP panel, with the advantage of a greatly reduced number of SNP effects to estimate. Taken together, using this panel, a combined breed reference and using BayesR rather than GBLUP_mod increased the accuracy of GEBV in Jerseys from 0.43 to 0.52, averaged across the 3 traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号