首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A trial was conducted to compare benefits obtained from feeding four types of silage. There were two silages that contained condensed tannins (CT)—lotus (Lotus corniculatus) and sulla (Hedysarum coronarium)—maize silage or traditional ryegrass pasture silage, all fed at 5 kg dry matter (DM) cow?1 day?1 with restricted pasture (RP). Cows on the RP (control) treatment and those fed the silage treatments were offered an allowance of 25 kg pasture DM cow?1 day?1, while the full pasture (FP) cows were offered 50 kg pasture DM cow?1 day?1. Silage supplementation increased both DM intake and milk yield compared with cows given RP only. Cows on the lotus silage supplement and the FP treatment had significantly higher milk production than the other silage supplemented cows (P < 0.001). For cows given lotus silage, the high milk yield was probably due to a combination of the higher nutritive value of the silage and possibly to the protein‐sparing effects of the lotus condensed tannins because the total DM intake of cows fed the lotus silage was the same as that of cows given the pasture and maize silages (P > 0.25). The high milk yield of the FP treatment was mainly a result of the cows having a higher intake of pasture than cows on all the other treatments. This study demonstrated the potential benefit of silage supplementation, particularly with lotus silage, for increased milksolids yield in summer when low pasture growth rates and quality may otherwise limit production. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
Fertilisation of herbage with Na can increase acceptability to cows, but the influence of fertiliser rate and fertilisation by K is unknown. In experiment 1, ten cows were grazed on pasture plots that had just been fertilised with 0–132 kg-Na ha−1 (current Na) and had received 0–64 kg-Na ha−1 in the previous grazing season (residual Na). Herbage Na concentration increased in proportion to current Na from 2·7 to 4·9 g-Na kg−1 dry matter (DM) and also increased with increasing residual Na from 2·2 to 4·5 g-Na kg−1 DM. Herbage K concentrations were low (10 g kg−1 DM at 0 kg-Na ha−1) and were only slightly reduced by Na fertiliser. Herbage Mg and Ca concentrations and DM digestibility were maximum at 66–99 kg-current-Na ha−1. Cows grazed current-Na-fertilised plots to a lower height and spent more time grazing them. In experiment 2, pasture plots received no fertiliser, low and high isomolar and independent applications of Na and K or a combination of the two. The herbage was more mature than in experiment 1 and Na concentration of the herbage without Na fertilizer was high (5 g kg−1 DM). Na fertiliser, therefore, only slightly increased Na concentration, more in clover than in grass, and had little effect on K concentration. K fertiliser increased K concentration from 16 to 20 g kg−1 DM and reduced Na concentration to 3·5 g kg−1 DM. Sodium fertiliser, therefore, only increased the acceptability of herbage to cattle when herbage Na concentrations were initially low (less than 5 g kg−1 DM) and were increased substantially by the application of the fertiliser. © 1998 SCI.  相似文献   

3.
Supplementing cows grazing highly digestible pasture with a Saccharomyces cerevisiae fermentation product (SCFP) was hypothesized to increase dry matter (DM) intake and milk production. Sixty multiparous dairy cows were fed 3 kg of crushed triticale DM/cow per day for 23 ± 4.4 d before calving. Half of the cows received SCFP (60 g/d; Diamond V Original XP; Diamond V Mills, Inc., Cedar Rapids, IA). Cows in both treatment groups were randomly allocated at calving to 1 of 2 amounts (3 or 6 kg of DM/d) of triticale feeding with or without 60 g of SCFP/day (n = 15/treatment) until 84 days in milk. The amount of pasture harvested (kg of DM/cow per day) and milk yield (kg/cow per day) were not affected by SCFP. Milk protein content and yield were greater in cows receiving 6 kg of crushed triticale DM/d. Plasma nonesterified fatty acids and β-hydroxybutyrate concentrations were not affected by SCFP supplementation, but were lower in cows fed 6 kg of crushed triticale DM/d than those fed 3 kg of DM/d. Supplementation with SCFP increased milk lactose content without affecting milk production under the conditions investigated.  相似文献   

4.
The ability of mid-infrared spectroscopy (MIR) to predict indicators (1) of diet composition in dairy herds and (2) for the authentication of the cow feeding restrictions included in the specification of 2 Protected Designation of Origin (PDO) cheeses (Cantal and Laguiole) was tested on 7,607 bulk milk spectra from 1,355 farms located in the Massif Central area of France. For each milk sample, the corresponding cow diet composition data were obtained through on-farm surveys. The cow diet compositions varied largely (i.e., from full grazing for extensive farming systems to corn silage-based diets, which are typical of more intensive farming systems). Partial least square regression and discriminant analysis were used to predict the proportion of different feedstuffs in the cows' diets and to authenticate the cow feeding restrictions for the PDO cheese specifications, respectively. The groups for the discriminant analysis were created by dividing the data set according to the threshold of a specific feedstuff. They were issued based on the specifications of the restriction of the PDO cheese. The pasture proportion in the cows' diets was predicted by MIR with an coefficient of determination in external validation (R2V) = 0.81 and a standard error of prediction of 11.7% dry matter. Pasture + hay, corn silage, conserved herbage, fermented forage, and total herbage proportion in the cows' diets were predicted with a R2V >0.61 and a standard error of prediction <14.8. The discrimination models for pasture presence, pasture ≥50%, and pasture ≥57% in the cows' diets achieved an accuracy and specificity ≥90%. A sensitivity and precision ≥85% were also observed for the pasture proportion discrimination models, but both of these indexes decreased at increasing thresholds from 0 to 50, and 57% pasture in the cows' diets. An accuracy ≥80% was also observed for pasture + hay ≥72%, herbage ≥50%, pasture + hay ≥25%, absence of fermented herbage, absence of corn silage, and corn silage ≤30% in the cows' diets, but for several models, either the sensitivity or precision was lower than the accuracy. Models built on the simultaneous respect of all the criteria of the feeding restrictions of PDO cheese specifications achieved an accuracy, specificity, sensitivity, and precision >90%. Both the regression and discriminant MIR models for bulk milk can provide useful indicators of cow diet composition and PDO cheese specifications to producers and consumers (farmers, dairy plants).  相似文献   

5.
《Journal of dairy science》2023,106(3):1837-1852
The objective of this research was to evaluate how different feeding strategies based on various pasture availability (PA) treatments within intensive seasonal production systems affected pasture production and utilization, sward quality, and the milk production, body weight (BW), and body condition score (BCS) of dairy cows. The performance data were obtained from a 3-yr experiment conducted previously (2018–2020, inclusive). In total, records from 208 spring-calving dairy cows were available for analysis. The animals were randomly allocated to 1 of 3 PA grazing treatments in spring that varied in average pasture cover (measured as herbage mass available above 3.5 cm) that was established via different pasture management strategies in the previous autumn. Thus, the opening average pasture cover across all paddocks on February 1 was 1,100 kg of dry matter (DM)/ha for high pasture availability (HPA), 880 for medium pasture availability (MPA), and 650 for low pasture availability (LPA), respectively. The measurements were taken over an 8-wk period during the first grazing rotation in spring, commencing on February 16 (±2 d) and finishing when all paddocks were grazed once on April 12 (±5 d). Paddocks that were part of the HPA treatment showed the highest pregrazing herbage masses and pregrazing sward heights (1,645 kg of DM/ha and 8.2 cm, respectively) compared with MPA (1,412 kg of DM/ha and 7.5 cm, respectively) and LPA (1,170 kg of DM/ha and 6.9 cm, respectively). Owing to the differences in PA, daily herbage allowance was greatest for HPA (11.7 kg of DM/cow), intermediate for MPA (10.2 kg of DM/cow), and lowest for LPA (8.8 kg of DM/cow), with the remaining feed deficit composed of additional daily grass silage supplementation (0.8, 1.5, and 2.8 kg of DM/cow for HPA, MPA, and LPA, respectively), while the daily concentrate and daily total feed allowance were equal between treatments during spring (2.7 and 15.0 kg of DM/cow). Despite salient differences in fresh pasture used, complementing pasture intake with grass silage did not affect daily or cumulative milk, solids-corrected milk, fat, or protein yield or milk constituents. Similarly, BW and BCS were also unaffected by PA treatment. The results highlight the importance of high spring pasture utilization and grazing efficiency achievable with higher pregrazing herbage masses, which also allow larger animal intakes from grazed pasture as the cheapest feed source during spring. Moreover, targeting an adequate pasture supply at the commencement of calving increases the grazing days per hectare and lowers the requirement for supplementary feed on farm, particularly when facing increasing variability in climatic conditions.  相似文献   

6.
Nitrate present in arable soils in autumn is at risk to leaching during the following winter. To see whether unused nitrogen fertiliser was a major source of this nitrate, 15N-labelled fertiliser was applied to 11 winter wheat crops at rates of between 47 and 234 kg N ha?1in spring. The experiments were on three contrasting soil types in south-east England. On average, 17′% of the N from spring-applied labelled fertiliser remained in the 0–23 cm soil layer at harvest (range, 7–36%) but only a small proportion was in inorganic forms (ammonium + nitrate). This was never more than 5 kg N ha?1and averaged only 1·3% of the fertiliser N applied (range, 0·4–3·6 %). Between 79 and 98% of the inorganic N in soils at harvest was unlabelled, being derived from the mineralisation of organic N rather than from unused fertiliser. The amount of unlabelled N was much greater where wheat was grown after ploughing up grass or grass/clover leys than where it was grown in all-arable rotations. When wheat was grown without N fertiliser, soil inorganic N content at harvest was no lower than in plots given fertiliser at rates up to 234 kg N ha?1. This work indicates that, for soil growing winter wheat, almost all of the nitrate at risk to leaching over the winter period comes from mineralisation of organic N, not from unused fertiliser applied in spring. Consequently, even a drastic reduction in N fertiliser use would have little effect on nitrate leaching.  相似文献   

7.
The effects of supplementation with grass silage and replacement of some corn in the concentrate with soybean meal (SBM) on milk production, and milk fatty acid (FA) profiles were evaluated in a replicated 4 × 4 Latin square study using 16 dairy cows grazing pasture composed of ryegrass, Kentucky bluegrass, and white clover. Each experimental period lasted for 3 wk. The 4 dietary treatments were PC, 20 h of access to grazing pasture, supplemented with 6 kg/d of corn-based concentrate mixture (96% corn; C); PCSB, 20 h of access to grazing pasture, supplemented with 6 kg/d of corn- and SBM-based concentrate mixture (78% corn and 18% SBM; CSB); SC, 7 h of access to grazing pasture during the day and 13 h of ad libitum access to grass silage at night, supplemented with 6 kg/d of C concentrate; and SCSB, 7 h of access to grazing pasture during the day and 13 h of ad libitum access to grass silage at night, supplemented with 6 kg/d of CSB concentrate. The concentrate mixtures were offered twice each day in the milking parlor and were consumed completely. Grass silage supplementation reduced dietary crude protein and concentration of total sugars, and dietary SBM inclusion increased dietary crude protein concentration and decreased dietary starch concentration. Milk yield and energy-corrected milk were increased by SBM supplementation of cows with access to grass silage. Milk protein concentration was lower in cows offered grass silage, regardless of whether SBM was fed. Dietary SBM inclusion tended to increase milk fat concentration. Plasma urea N was reduced by silage feeding and increased by SBM supplementation. Supplementation with grass silage overnight could represent a useful strategy for periods of lower pasture availability. Dietary inclusion of SBM in solely grazing cows had no effects on milk production and composition, exacerbated the inefficient capture of dietary N, and increased diet cost. Grass silage supplementation affected milk FA profiles, increasing both the FA derived from de novo synthesis and those derived from rumen microbial biomass, and decreasing the sum of C18 FA (mostly derived from diet or from mobilization of adipose tissue reserves). Milk fat concentrations of conjugated linoleic acid cis-9, trans-11, vaccenic acid (18:1 trans-11), and linolenic acid (18:3n-3) were unaffected by grass silage supplementation, suggesting that partial replacement of pasture by unwilted grass silage does not compromise the dietary quality of milk fat for humans.  相似文献   

8.
Sodium selenite, sodium selenate, and sodium selenate in a pill formulation were applied to three soils known to produce Se-deficient herbage ( < 100 μg Se kg?1 dry matter (DM)). The ability of the salts, applied in spring 1985, to ameliorate Se deficiency was followed over 3 years by taking four harvests each year. Selenate treatment at 10 g Se ha?1 and selenate prill treatment at 20 g Se ha?1 produced herbage with Se levels (geometric means) of between 0.57-0.86 and 1.79-1992 mg kg?1 DM respectively in the first spring harvest after treatment. Selenite was less potent and selenite at 100 g Se ha?1 produced a response in herbage closely similar to that of selenate at 10 g Se ha?1. Even at 300 g Se ha?1 the selenite treatment produced herbage with only 1.00-1.36 mg Se kg?1 DM at the first harvest. Application of selenate in the prill form at 60 g Se ha?1 produced herbage potentially toxic to grazing animals with 4.81-4.94 mg Se kg?1 DM. The addition of fertiliser N to Se-treated plots increased total Se uptake at the first harvest by a factor of 4 and had a small effect on Se concentration. The Se concentration levels in herbage from Se-treated plots declined exponentially (t1/2 = 21-43 days). On one soil derived from Lower Old Red Sandstone and lava, selenite at 300 g Se ha?1 gave herbage with Se contents significantly above background (P < 0.05) in all harvests over 3 years.  相似文献   

9.
This study evaluated the effects of gradual replacement of a mixture of late-cut grass silage (LS) and barley with early-cut grass silage (ES) on milk production, CH4 emissions, and N utilization in Swedish Red cows. Two grass silages were prepared from the same primary growth of timothy grass sward but harvested 2 wk apart [11.0 and 9.7 MJ of metabolizable energy/kg of dry matter (DM)]. Four diets, fed as a total mixed ration, were formulated to meet the metabolizable energy and protein requirements of 35 kg of energy-corrected milk (ECM) by gradually replacing a mixture of LS and barley with ES (0, 33, 67, and 100% of the forage component of the diet), whereas the proportion of barley decreased from 47.2 to 26.6% of diet DM. Expeller canola meal was used as a protein supplement. Sixteen Swedish Red cows were used in 4 replicated 4 × 4 Latin squares. Cows were offered diets ad libitum and milked twice daily. Each period of 28 d comprised 14 d of diet adaptation followed by 14 d of data collection. Intake and milk yield were recorded daily, and milk samples were collected on d 19 to 21 and d 26 to 28 of each period. Diet digestibility was determined by grab sampling using indigestible neutral detergent fiber as an internal marker. Gas emissions were measured using the GreenFeed system (C-Lock Inc., Rapid City, SD). Dry matter intake (DMI) linearly decreased from 22.6 to 19.3 kg/d as the proportion of ES increased in the diet. The ECM yield did not differ among treatments, but milk protein yield decreased with increasing proportion of ES in the diet. Because of reduced DMI with increasing ES, feed efficiency (ECM/DMI) improved with an increased proportion of ES in the diet. Nitrogen efficiency (milk N/N intake) did not change despite a linear increase in milk urea N concentration from 9.7 (LS alone) to 11.9 mg/dL (ES alone) with graded replacement of LS and barley by ES in the diet. Lower DMI responses in ES diets were partly compensated for by increased organic matter digestibility (656 g/kg of DM for LS alone; 715 g/kg of DM for ES alone) related to improved forage digestibility at early harvesting. Total CH4 emissions and CH4 intensity (CH4/ECM) were not influenced by diet, but CH4 yield (CH4/DMI) increased linearly from 19.5 to 23.0 g/kg of DMI with greater inclusion of ES in the diet. In conclusion, replacing LS and barley with ES improved the conversion of feed to milk without increasing CH4 emissions or compromising N efficiency.  相似文献   

10.
Milk production of fall-calving dairy cows during subsequent summer grazing was evaluated in two consecutive years using a total of 80 mid- to late-lactation Holsteins. Cows calved during September and October and grazed from April to August in the following year. In yr 1, 27 cows grazed a native grass pasture and 13 cows grazed a native grass-clover mixed pasture containing 26% red clover and white clover. In yr 2, 40 cows grazed native grass pasture as one group. Also, cows in yr 2 were administered bovine somatotropin, whereas in yr 1, no bST was used. Grazing cows also were fed concentrate supplements at 6.2 kg/d of dry matter (DM) in yr 1 and 7.9 kg/d of DM in yr 2 to provide 35 to 40% of total intake. Average daily milk during the grazing period decreased 3.6 kg in yr 1 and 7.7 kg in yr 2 when compared with milk yield extrapolated from the lactation curve established 10 wk before being turned out to pasture. Estimated DM intake during grazing was also less than what would have been expected had cows continued on a total mixed ration in confinement. Cows grazing the mixed pasture of grass and clover yielded 1.3 kg/d more milk than those grazing the grass pasture in yr 1. A decrease in milk resulting from the change from total mixed ration fed in confinement to grazing supplemented with concentrates was not avoided with these mid- to late-lactation cows, but the cumulative loss over the lactation was less than with early lactation cows in a companion study. Clover enhances the grazing value of pasture when grown with grasses.  相似文献   

11.
Grazed grass is the cheapest feed available for dairy cows in temperate regions; thus, to maximize profits, dairy farmers must optimize the use of this high-quality feed. Previous research has defined the benefits of including white clover (Trifolium repens L.) in grass swards for milk production, usually at reduced nitrogen usage and stocking rate. The aim of this study was to quantify the responses in milk production of dairy cows grazing tetraploid or diploid perennial ryegrass (Lolium perenne L.; PRG) sown with and without white clover but without reducing stocking rate or nitrogen usage. We compared 4 grazing treatments in this study: tetraploid PRG-only swards, diploid PRG-only swards, tetraploid with white clover swards, and diploid with white clover swards. Thirty cows were assigned to each treatment, and swards were rotationally grazed at a farm-level stocking rate of 2.75 cows/ha and a nitrogen fertilizer rate of 250 kg/ha annually. Sward white clover content was 23.6 and 22.6% for tetraploid with white clover swards and diploid with white clover swards, respectively. Milk production did not differ between the 2 ploidies during this 4-yr study, but cows grazing the PRG-white clover treatments had significantly greater milk yields (+596 kg/cow per year) and milk solid yields (+48 kg/cow per year) compared with cows grazing the PRG-only treatments. The PRG-white clover swards also produced 1,205 kg of DM/ha per year more herbage, which was available for conserving and buffer feeding in spring when these swards were less productive than PRG-only swards. Although white clover is generally combined with reduced nitrogen fertilizer use, this study provides evidence that including white clover in either tetraploid or diploid PRG swards, combined with high levels of nitrogen fertilizer, can effectively increase milk production per cow and per hectare.  相似文献   

12.
In the present study, a total of 116 tank milk samples were collected from 30 farms located in The Netherlands and analysed by Fourier-transform infrared (FTIR) spectroscopy. Samples were collected in April, May and June 2011 and in February 2012. The samples differed in the time spent by the cows on pasture, presence/absence of fresh grass in the daily ration and the farming system (organic/biodynamic or conventional). Classification models based on partial least square discriminant analysis (PLS-DA) of FTIR spectra were developed for the prediction of fresh grass feeding, pasture grazing and organic farming. The PLS-DA model discriminated between milk from cows that had fresh grass in the daily ration and milk from cows that had not fresh grass with sensitivity and specificity values of 88% and 83% in external validation and all the samples from cows that had no fresh grass collected in spring were correctly classified. The PLS-DA model developed for the authentication of pasture grazing showed comparable accuracy when the whole sample set is considered but was less accurate on the spring samples (75% of samples from cows indoors in spring correctly classified). Discrimination of organic and conventional milk was also accomplished with acceptable accuracy with % correct classification of 80% and 94% respectively in external validation. The results suggest that milk FTIR spectra contain valuable information on cows' diet that can be used for authentication purposes.  相似文献   

13.
In pasture-based dairy systems, daily time at pasture is restricted during several periods of the year. The aim of this experiment was to evaluate the effect of restricting time at pasture on milk yield, pasture dry matter (DM) intake, and grazing behavior of dairy cows according to pasture allowance (PA), which partly defines pasture availability. The experiment was carried out in spring on strip-grazed perennial ryegrass pastures. The 6 treatments consisted of 3 durations of daily time at pasture [U: unrestricted day and night grazing (22 h at pasture); R9: 1 grazing session restricted to 9 h between the 2 milkings; R5: 2 grazing sessions of 2.75 h after each milking) compared at low and high PA (13 and 24 kg of DM/d per cow >5 cm, respectively). Eighteen mid-lactation Holstein dairy cows were used according to a 6 × 4 incomplete Latin square design replicated 3 times with four 14-d periods. Pasture DM intake was measured by the ytterbium-fecal index method and grazing behavior from portable devices. On average, restricting time at pasture from U to R (mean of R5 + R9) decreased pasture intake by 2.9 kg of DM, milk yield by 1.3 kg, and milk protein concentration by 0.11%, and increased milk fat concentration by 0.20%. Pasture intake and milk yield did not differ significantly between R9 and R5. The reduction of pasture intake and milk yield with decreasing time at pasture was greater at high compared with low PA. Grazing times were 536, 414, and 305 min, representing proportions of time spent grazing of 0.40, 0.77, and 0.93 for treatments U, R9, and R5, respectively. The reduction of grazing time with decreasing time at pasture was greater at high compared with low PA. Pasture intake rate greatly increased with decreasing time at pasture, but mainly on R5 (29.8, 31.6, and 42.1 g of DM/min for U, R9, and R5, respectively). The effect of time at pasture on pasture intake rate was unaffected by PA. In conclusion, the effect of restriction of time at pasture on pasture intake and milk yield becomes more marked as PA increases. Cows offered only 2 grazing sessions of 2.75 h after each milking maximized pasture intake rate and consumed pasture as much as in one 9-h grazing session.  相似文献   

14.
The objective of this experiment was to investigate the effect of restricting pasture access time on milk production and composition, body weight and body condition score change, dry matter intake, and grazing behavior of autumn calving dairy cows in midlactation. Fifty-two (19 primiparous and 33 multiparous) Holstein-Friesian dairy cows (mean calving date, August 17 ± 91.2 d) were randomly assigned to a 4-treatment (n = 13) randomized block design grazing study. The 4 grazing treatments were: (i) full-time access to pasture (22H; control), (ii) 9-h access to pasture (9H), (iii) two 4.5-h periods of access to pasture after both milkings (2 × 4.5H), and (iv) two 3-h periods of access to pasture after both milkings (2 × 3H). Experimental treatments were imposed from March 7 to April 6, 2007 (31 d). The pregrazing herbage mass of swards offered to all treatments was 1,268 kg of dry matter/ha, and sward organic matter digestibility was 86.4%, indicating high-quality swards conducive to high dry matter intake. Swards where animals had 22H and 2 × 4.5H access to pasture had the lowest postgrazing sward heights (3.5 cm), reflecting the greatest levels of sward utilization. After the experimental period, there were no differences in milk production; however, the 2 × 3H animals tended to have lower milk protein concentration (−0.17%) compared with 22H animals. Furthermore, dry matter intake of the 9H animals was lower than 22H animals. Although restricting access time to pasture decreased grazing time, animals compensated by increasing their intake/minute and intake/bite. Restricting pasture access time resulted in much greater grazing efficiency, because the 9H, 2 × 4.5H, and 2 × 3H treatments spent a greater proportion of their time at pasture grazing (81, 81, and 96%, respectively) than 22H animals (42%). Results of this study indicate that allocating animals restricted access to pasture does not significantly affect milk production. This study also found that the total access time should be greater than 6 h and that perhaps needs to be divided into 2 periods.  相似文献   

15.
An experiment was undertaken to investigate the effect of white clover inclusion in grass swards (GWc) compared with grass-only (GO) swards receiving high nitrogen fertilization and subjected to frequent and tight grazing on herbage and dairy cow productivity and enteric methane (CH4) emissions. Thirty cows were allocated to graze either a GO or GWc sward (n = 15) from April 17 to October 31, 2011. Fresh herbage [16 kg of dry matter (DM)/cow] and 1 kg of concentrate/cow were offered daily. Herbage DM intake (DMI) was estimated on 3 occasions (May, July, and September) during which 17 kg of DM/cow per day was offered (and concentrate supplementation was withdrawn). In September, an additional 5 cows were added to each sward treatment (n = 20) and individual CH4 emissions were estimated using the sulfur hexafluoride (SF6) technique. Annual clover proportion (±SE) in the GWc swards was 0.20 ± 0.011. Swards had similar pregrazing herbage mass (1,800 ± 96 kg of DM/ha) and herbage production (13,110 ± 80 kg of DM/ha). The GWc swards tended to have lower DM and NDF contents but greater CP content than GO swards, but only significant differences were observed in the last part of the grazing season. Cows had similar milk and milk solids yields (19.4 ± 0.59 and 1.49 ± 0.049 kg/d, respectively) and similar milk composition. Cows also had similar DMI in the 3 measurement periods (16.0 ± 0.70 kg DM/cow per d). Similar sward and animal performance was observed during the CH4 estimation period, but GWc swards had 7.4% less NDF than GO swards. Cows had similar daily and per-unit-of-output CH4 emissions (357.1 ± 13.6 g of CH4/cow per day, 26.3 ± 1.14 g of CH4/kg of milk, and 312.3 ± 11.5 g of CH4/kg of milk solids) but cows grazing GWc swards had 11.9% lower CH4 emissions per unit of feed intake than cows grazing GO swards due to the numerically lower CH4 per cow per day and a tendency for the GWc cows to have greater DMI compared with the GO cows. As a conclusion, under the conditions of this study, sward clover content in the GWc swards was not sufficient to improve overall sward herbage production and quality, or dairy cow productivity. Although GWc cows had a tendency to consume more and emitted less CH4 per unit of feed intake than GO cows, no difference was observed in daily or per-unit-of-output CH4 emissions.  相似文献   

16.
A study was conducted to evaluate the potential effects of altering the proportion of dietary structural carbohydrate (SC) relative to nonfiber carbohydrate (NFC) pre- and postpartum on milk production and the circulating concentrations of hormones and metabolites. Dietary treatments were arranged as a 2 × 2 factorial, with 68 multiparous cows assigned to isoenergetic diets [114 MJ of metabolizable energy (ME)/cow per d] precalving; diets were either fresh pasture and pasture silage (PreP) or pasture and pasture silage supplemented with 3 kg dry matter (DM)/cow per d of a corn- and barley-based concentrate for 36 d prepartum (PreC). Final treatments were 13 or 32% DM NFC, respectively. After calving, cows within each prepartum diet were assigned to isoenergetic diets (179 MJ of ME/cow per d) differing in their SC and NFC content. Postcalving diets were either fresh pasture and pasture silage (PostP) or pasture and pasture silage supplemented with 5 kg DM/cow per d of a corn- and barley-based concentrate (PostC) until 35 d in milk. Final treatments were 18 and 38% DM NFC, respectively. Relative to day of calving (d 0), blood samples were collected at least weekly from d −28 to d 35. During the prepartum period, PreC cows had lower plasma urea, albumin, insulin-like growth factor-I, and Ca concentrations, but greater nonesterified fatty acid and Mg concentrations. There were no evident effects of prepartum diet on body weight or body condition score, milk yield, or milk composition. During the postpartum period, PostC cows had lower concentrations of plasma urea, β-hydroxybutyrate, and Ca, but greater concentrations of nonesterified fatty acids, glucose, insulin-like growth factor-I, and Mg. Postpartum metabolic differences in PostC cows were associated with increased milk protein production and reduced milk fat (yield and %). Results do not support a periparturient metabolic benefit to altering the SC to NFC ratio precalving, but imply an altered rumen fermentation, gluconeogenesis, and milk composition when dietary SC to NFC ratio is altered postcalving.  相似文献   

17.
Two silages were prepared from the first-cut sward of timothy-meadow fescue and wilted to a dry matter (DM) content of 300 g kg-1. One was ensiled with the addition of a formic-acid-based additive (4 litres formic acid (FA) per tonne) and the other with the addition of a bacterial inoculant (LAB) at a rate of 5×106 colony forming units g-1. Both silages were well preserved, but the extent of fermentation was greater in LAB-silage than in FA-silage as indicated by a lower concentration of water soluble carbohydrates (68 vs 177 g kg-1 DM) and a higher concentration of lactic acid (147 vs 32 g kg-1 DM). Four Ayrshire cows were used in a 4×4 Latin square experiment with 21-day periods to study the effects of silage fermentation and postruminal casein supplementation on silage intake, nutrient supply and milk production. The four treatments were FA-silage without casein (FA-0), LAB-silage without casein (LAB-0), FA-silage with casein (FA-C) and LAB-silage with casein (LAB-C). Both silages were given ad libitum with 8 kg day-1 of barley without or with 400 g day-1 of casein infused into the duodenum. Organic matter digestibility was lower (0·723 vs 0·753; P<0·01) for FA-silage than for LAB-silage. Cows offered FA-silage had a higher molar proportion of acetate and a lower proportion of propionate in ruminal fluid than cows offered LAB-silage. Microbial protein synthesis estimated from the output of purine derivatives in urine was greater (288 vs 260 g N day-1; P<0·05) for cows given FA-silage compared with LAB-silage. Feeding LAB-treated silage tended (P<0·10) to decrease silage DM intake compared with FA-treated silage (10·61 vs 11·77 kg DM day-1). Silage composition did not affect significantly milk yield or milk composition. Casein infusion increased milk yield (25·1 vs 27·1 kg day-1; P<0·05), milk protein content (32·4 vs 33·8 g kg-1; P<0·05) and protein yield (808 vs 905 g day-1; P<0·01). The responses were similar for both silages. © 1997 SCI.  相似文献   

18.
The development of soya-yoghurt starter culture from fermented tropical vegetables was initiated. Soya milk fortified with 10 g litre?1 sucrose was sterilised (121°C for 15 min) and inoculated with the exudate of fermented tropical vegetables. Acid production in the soya milk medium during incubation at 42°C for 5 h was evaluated and compared with cows' milk based cultures. Aroma of the soya milk based and cows' milk based cultures was also compared. Cultures derived from fermented cassava and corn separately reduced soya milk pH from 6′8 to 43 and 45, and significantly greater culture activity was observed in soya milk than in cows' milk. The culture from corn produced the most acceptable yoghurt-like aroma in soya milk while that from African oil bean seed produced the least acceptable aroma. The consumer-acceptable mild buttermilk-like aroma of yoghurt was not produced in soya milk or cows' milk by the cultures evaluated.  相似文献   

19.
The effects of incremental amounts of nitrogen fertiliser in the range 0–200 kg ha?1 on yield ha?1, tuber dry matter (DM), DM ha?1and flouriness were evaluated in five potato cultivars over three seasons. In general, yield increased with the use of up to 100–150 kg N ha?1and remained constant thereafter; % DM of tubers was significantly diminished by amounts of nitrogen > 150 kg ha?1. In a single poor growing season, yields were small and both yield and% DM were less affected by nitrogen. The mean flouriness score of cooked tubers was highly correlated with specific gravity (SG) class (r = 0.94); tubers with SG > 1.08 were scored floury to very floury. Moderate nitrogen fertiliser use (? 100 kg ha?1) had little effect on weight per cent of crop > SG 1.08; large amounts of N (200 kg ha?1) resulted in a substantial decline in the size of this fraction; the effects of intermediate amounts varied with season and cultivar.  相似文献   

20.
The influence of feeding system and lactation period on the gross composition, macroelements (Ca, P, Mg, and Na), and trace elements (Zn, Fe, Cu, Mo, Mn, Se, and Co) of bovine milk was investigated. The feeding systems included outdoor grazing on perennial ryegrass pasture (GRO), outdoor grazing on perennial ryegrass and white clover pasture (GRC), and indoors offered total mixed ration (TMR). Sixty spring-calving Holstein Friesian dairy cows were assigned to 3 herds, each consisting of 20 cows, and balanced with respect to parity, calving date, and pre-experimental milk yield and milk solids yield. The herds were allocated to 1 of the 3 feeding systems from February to November. Milk samples were collected on 10 occasions over the period June 17 to November 26, at 2 or 3 weekly intervals, when cows were on average 119 to 281 d in lactation (DIL). The total lactation period was arbitrarily sub-divided into 2 lactation periods based on DIL, namely mid lactation, June 17 to September 9 when cows were 119 to 203 DIL; and late lactation, September 22 to November 26 when cows were 216 to 281 DIL. With the exception of Mg, Na, Fe, Mo, and Co, all other variables were affected by feeding system. The GRO milk had the highest mean concentrations of total solids, total protein, casein, Ca, and P. The TMR milk had the highest concentrations of lactose, Cu, and Se, and lowest level of total protein. The GRC milk had levels of lactose, Zn, and Cu similar to those of GRO milk, and concentrations of TS, Ca, and P similar to those of TMR milk. Lactation period affected all variables, apart from the concentrations of Fe, Cu, Mn, and Se. On average, the proportion (%) of total Ca, P, Zn, Mn, or Se that sedimented with the casein on high-speed ultracentrifugation at 100,000 × g was ≥60%, whereas that of Na, Mg, or Mo was ≤45% total. The results demonstrate how the gross composition and elemental composition of milk can be affected by different feeding systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号