首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of dairy science》2022,105(8):6710-6723
The objectives of this study were to examine the effects of pelleted starter diets differing in starch and neutral detergent fiber (NDF) content when fed differing levels of milk replacer (MR) on nutrient digestibility, whole gastrointestinal tract fermentation, pH, and inflammatory markers in dairy calves around weaning. Calves were randomly assigned to 1 of 4 dietary treatments (n = 12 per treatment) in a 2 × 2 factorial design based on daily MR allowance and amount of starch in pelleted starter (SPS): 0.691 kg of MR per day [dry matter (DM) basis] with starter containing low or high starch (12.0% and 35.6% starch on DM basis, respectively), and 1.382 kg of MR per day (DM) with starter containing low or high starch. All calves were housed in individual pens with straw bedding until wk 5 when bedding was covered. Calves were fed MR twice daily (0700 and 1700 h) containing 24.5% crude protein (DM) and 19.8% fat (DM), and had access to pelleted starter (increased by 50 g/d if there were no refusals before weaning and then 200 g/d during and after weaning) and water starting on d 1. Calves arrived between 1 and 3 d of age and were enrolled into an 8-wk study, with calves undergoing step-down weaning during wk 7. Starting on d 35, an indwelling pH logger was inserted orally to monitor rumen pH until calves were dissected at the end of the study in wk 8. Higher SPS calves showed an increase in rumen pH magnitude (1.46 ± 0.07) compared with low SPS calves (1.16 ± 0.07), a decrease in rumen pH in wk 8 (high SPS: 5.37 ± 0.12; low SPS: 5.57 ± 0.12), and a decrease in haptoglobin in wk 8 (high SPS: 0.24 ± 0.06 g/L; low SPS: 0.49 ± 0.06 g/L). The majority of differences came from increased starter intake in general, which suggests that with completely pelleted starters the differences in starch and NDF do not elicit drastic changes in fermentation, subsequent end products, and any resulting inflammation in calves around weaning.  相似文献   

2.
《Journal of dairy science》2022,105(5):4099-4115
The objectives of this study were to investigate how milk replacer (MR) allowance and differing concentrations of starch and neutral detergent fiber in starter alters visceral tissue and overall growth of the calf. Calves were randomly assigned to 1 of 4 dietary treatments (n = 12 per treatment) arranged in a 2 × 2 factorial based on daily MR allowance (MRA) and amount of starch in pelleted starter (SPS) as follows: 0.691 kg of MR/d [dry matter (DM) basis] with starter containing low or high starch (12.0% and 35.6% starch, respectively) and 1.382 kg of MR/day (DM) with starter containing low or high starch. All calves were housed in individual pens with straw bedding until wk 5 when bedding was covered to minimize intake. Calves were fed MR twice daily (0700 and 1700 h) containing 24.5% crude protein (DM) and 19.8% fat (DM), and had access to pelleted starter (increased by 50 g/d if there were no refusals before weaning, and then 200 g/d during and after weaning) and water starting on d 1. Calves arrived between 1 and 3 d of age and were enrolled into an 8-wk study, with calves undergoing step-down weaning during wk 7. Intakes were measured daily, and body weight (BW) and blood samples were recorded and collected weekly. Calves were dissected in wk 8 for visceral tissue measurements. Overall, there was increased MR DM intake for the high- (0.90 ± 0.01 kg/d; ± SE) compared with the low-MRA (0.54 ± 0.01 kg/d) calves, whereas starter DM intake increased in low- (0.47 ± 0.05 kg/d) compared with high-MRA (0.20 ± 0.05 kg/d) calves, which was driven by increases in wk 6, 7, and 8. High-MRA calves had increased BW during wk 2, 3, 4, 5, 6, and 7. The difference in BW disappeared by wk 8, with overall average daily gain having a tendency to be increased in high (0.57 ± 0.04 kg/d) compared with low-MRA (0.50 ± 0.04 kg/d) calves, whereas average daily gain was increased in high-MRA calves during wk 2 and 3 and increased in low-MRA calves during wk 7 and 8. There were several differences throughout visceral tissue measurements, but most notably, an increase in rumen mass (i.e., full, empty, and digesta weights) in low- compared with high-MRA calves, as well as in low- compared with high-SPS calves was observed. The length, width, and 2-dimensional area of rumen papillae were also increased in low- (area: 0.88 ± 0.03 mm2) compared with high-MRA (0.46 ± 0.03 mm2) calves. The majority of differences were attributed to increased MR allowance, which contributed to reduced pelleted starter intake by more than 50% and reduced rumen development, whereas differences in starch intake from the completely pelleted starter had minimal effects on overall growth and tissue measurements.  相似文献   

3.
The objectives of this study were to determine the effects of the weaning transition and supplemental rumen-protected butyrate on subacute ruminal acidosis, feed intake, and growth parameters. Holstein bull calves (n = 36; age = 10.7 ± 4.1 d; ± standard deviation) were assigned to 1 of 4 treatment groups: 2 preweaning groups, animals fed milk replacer only (PRE-M) and those fed milk replacer, calf starter, and hay (PRE-S); and 2 postweaning groups, animals fed milk replacer, calf starter, and hay without supplemental rumen-protected butyrate (POST-S) or with supplemental rumen-protected butyrate at a rate of 1% wt/wt during the 2-wk weaning transition (POST-B). Milk replacer was provided at 1,200 g/d; starter, water, and hay were provided ad libitum. Weaning took place over 14 d by reducing milk replacer provision to 900 g/d in wk 7, 600 g/d in wk 8, and 0 g/d in wk 9. Rumen pH was measured continuously for 7 d during wk 6 for PRE-S and PRE-M and during wk 9 for POST-S and POST-B. After rumen pH was measured for 7 d, calves were euthanized, and rumen fluid was sampled and analyzed for volatile fatty acid (VFA) profile. Individual feed intake was recorded daily, whereas, weekly, body weights were recorded, and blood samples were collected. Compared with PRE-M, PRE-S calves tended to have a greater total VFA concentration (35.60 ± 11.4 vs. 11.90 ± 11.8 mM) but mean rumen pH was unaffected (6.25 ± 0.22 vs. 6.17 ± 0.21, respectively). Between PRE-S (wk 6) and POST-S (wk 9), calf starter intake increased (250 ± 219 vs. 2,239 ± 219 g/d), total VFA concentrations increased (35.6 ± 11.4 vs. 154.4 ± 11.8 mM), but mean rumen pH was unaffected (6.25 ± 0.22 vs. 6.40 ± 0.22, respectively). Compared with POST-S, POST-B calves had greater starter intake in wk 7, 8, and 9, but POST-B tended to have lower total VFA concentration (131.0 ± 11.8 vs. 154.4 ± 11.8 mM) and lower mean ruminal pH (5.83 ± 0.21 vs. 6.40 ± 0.22). In conclusion, the weaning transition does not appear to affect rumen pH and VFA profile, but supplementing rumen-protected butyrate during the weaning transition increased starter intake and average daily gain. Further, these data suggest that the ability of the rumen to manage rumen pH changes fundamentally postweaning. Why weaned calves with lower rumen pH can achieve higher calf starter intakes is unclear; these data suggest the effect of rumen pH on feed intake differs between calves and cows.  相似文献   

4.
The objective of this study was to evaluate the effect of feeding calf starter on rumen pH of dairy calves during weaning transition. Twenty Holstein bull calves were paired into 10 blocks by starting date of the study and body weight, and fed either milk replacer and hay (MR) or MR, hay, and a commercial texturized calf starter (MR+S) in a randomized complete block design. All calves were fed 750 g/d of milk replacer as the basal diet. Calves on MR+S treatment were also fed a calf starter ad libitum to maintain similar energy intake between calves within blocks, and MR calves were fed additional milk replacer that was equivalent to energy from calf starter intake. When MR+S calves consumed a calf starter at 680 g/d for 3 consecutive d, rumen pH of a MR+S calf and his MR counterpart was measured continuously for 3 d using a small ruminant rumen pH measurement system. Treatment did not affect minimum pH, mean pH, maximum pH, standard deviation of mean pH, and duration or area under pH 5.8, indicating that calf starter consumption did not appear to affect rumen pH. However, hay intake was negatively correlated to area under pH 5.8, with a breakpoint at 0.080 kg/d intake, suggesting hay intake might play an important role in mitigating ruminal acidosis in dairy calves during weaning transition.  相似文献   

5.
Twelve Holstein bull calves were ruminally cannulated at 5 d of age and assigned to 0 or 1 mg of lasalocid/kg of BW daily, administered postruminally via milk replacer or into the ruminal cannula. Calves were fed milk replacer for 8 wk and calf starter for 12 wk. Lasalocid administration was terminated at weaning in calves fed lasalocid in milk replacer. Ruminal pH tended to be higher in calves fed lasalocid ruminally than in calves on control treatment and averaged 5.9 and 5.6 and 5.4 and 5.1 during wk 1 to 8 and 9 to 12, respectively. Molar proportion of ruminal butyrate tended to be lower when lasalocid was added to the rumen, particularly after weaning. Blood beta-hydroxybutyrate and acetoacetate were lower when lasalocid was administered into the rumen after weaning and averaged .897 and .646 and .026 and .015 mM in calves on control and ruminal treatments, respectively. No effects of lasalocid administered via the milk replacer were observed, except for plasma NEFA, which were reduced postweaning. These data suggest that lasalocid reduces blood beta-hydroxybutyrate by changes in ruminal fermentation and subsequent metabolism of butyrate by ruminal epithelium.  相似文献   

6.
Effects of weaning age (4 and 8 wk) and ration (complete pelleted starter and unpelleted starter plus alfalfa-grass hay) on development of ruminal function were tested in a split-plot design. Maturity of ruminal function was estimated by the contribution of bacterial nitrogen to total nitrogen reaching the abomasum, essential amino acid composition of bacterial and abomasal protein, and ruminal volatile fatty acid concentrations. Sixteen Holstein bull calves were fitted with rumen and abomasal cannulas by 1 wk of age, and ingesta were sampled twice weekly from 2 to 11 wk of age. Contribution of bacterial nitrogen to total nitrogen in abomasal contents was similar to that of mature ruminants by 5 and 7 wk of age for calves weaned at 4 and 8 wk of age, respectively. Concentrations of ruminal volatile fatty acids indicative of mature ruminal function were reached by 5 wk of age. Pattern of essential amino acids in bacterial cells of the rumen was not affected by age, weaning age, or ration and was similar to that of mature ruminants. Analysis of abomasal digesta indicated no effect of starter ration and no effect of age or weaning age on the relative proportion of essential amino acids except lysine and arginine. Lysine decreased and arginine increased linearly from 2 wk until weaning.  相似文献   

7.
The objective of this study was to evaluate the effects of different liquid-feeding systems using a medium crude protein milk replacer on performance, rumen, and blood parameters. Thirty newborn Holstein calves were blocked according to birth weight and date of birth, and randomly distributed to different liquid-feeding systems: conventional (4 L/d), intensive (8 L/d), or step-up/step-down (wk 1, 4 L/d; wk 2 to 6, 8 L/d; wk 7 and 8, 4 L/d). The commercial milk replacer (12.5% solids, 20.2% crude protein, 15.6% fat) was fed twice daily (0700 and 1700 h) until calves were weaned, at 8 wk of age. Calves were individually housed in wood hutches, with free access to water and starter concentrate, and to hay only after weaning. They were followed through 10 wk of age. Milk replacer and starter intake were inversely affected by feeding system. After weaning, starter intake and hay intake were similar among feeding systems. Total dry matter intake was higher during the liquid-feeding period for calves on the intensive system compared to calves on the conventional system, but conventional feeding resulted in the highest dry matter intake after weaning. Feed efficiency was similar among feeding systems before and after weaning. Average body weight and daily gain were not affected by feeding system before or after weaning. During liquid feeding, diarrhea occurrence was lower for calves on the conventional system; however, when calves on the step-up/step-down system were fed lower volumes of liquid feed, diarrhea occurrence was similar to that of calves on the conventional system. Plasma concentrations of β-hydroxybutyrate were higher for calves on the conventional system, reflecting starter intake. Rumen pH, short-chain fatty acids, and N-NH3 were not affected by feeding system. Feeding higher volumes of milk replacer with a medium crude protein content had no beneficial effect on the performance of calves up to 10 wk of age.  相似文献   

8.
Neonatal Holstein calves were fed texturized calf starters containing 33% whole (WC), dry-rolled (DRC), roasted-rolled (RC), or steam-flaked (SFC) corn to investigate how corn processing method affects intake, growth, rumen and blood metabolites, and rumen development. In the first experiment, 92 Holstein calves (52 male and 40 female) were started at 2 +/- 1 d of age and studied for 42 d. Starter dry matter (DM) intake was measured and fecal scoring conducted daily. Growth and blood parameter measurements were conducted weekly. A subset of 12 male calves (3/treatment) was euthanized at 4 wk of age and rumen tissue sampled for rumen epithelial development measurements. Experiment 2 consisted of 12 male Holstein calves ruminally cannulated at 7 +/- 1 d of age. Rumen fluid and blood samples were collected during wk 2 to 6. In the first experiment, postweaning and overall starter and total DM intake were significantly higher in calves fed starter with DRC than RC or SFC. Postweaning and overall starter and total DM intake were significantly higher in calves fed starter with WC than SFC. Postweaning average daily gain was significantly greater in calves fed starter with DRC than SFC. Blood volatile fatty acid concentrations were significantly higher in calves fed starter with SFC than in calves fed all other treatments. Papillae length and rumen wall thickness at 4 wk were significantly greater in calves fed starter with SFC than DRC and WC, respectively. In experiment 2, calves fed starter with WC had higher rumen pH and lower rumen volatile fatty acid concentrations than calves fed all other starters. Rumen propionate production was increased in calves receiving starter with SFC; however, rumen butyrate production was higher in calves fed starter with RC. Results indicate that the type of processed corn incorporated into calf starter can influence intake, growth, and rumen parameters in neonatal calves. Calves consuming starter containing RC had similar body weight, feed efficiency, and rumen development but increased structural growth and ruminal butyrate production when compared with the other corn processing treatments.  相似文献   

9.
Performance, rumen development, and metabolism of male Holstein calves (n = 54) were evaluated according to 1 of 3 liquid feeding strategies: 4 L of milk replacer (MR)/d until 60 d old (4L-60d), 6 L of MR/d until 29 d old and 4 L/d from 30 to 60 d (6L-29d/4L-60d), or 6 L of MR/day until 60 d old (60d-6L). Water and starter were provided ad libitum. Intakes of MR and starter were monitored daily and body weight (BW) weekly. Blood samples for glucose and insulin concentrations and ruminal content samples for volatile fatty acids and ruminal ammonia concentrations were collected at 15, 30, 45, 60, 75, and 90 d of age. Six calves on each treatment were euthanized at 30, 60, and 90 d of age. Empty weights of forestomach and abomasum, papillae length, and mitotic index were measured. Average MR intake/d (expressed as a percent of BW) was greater for calves receiving 6 L/d than for those receiving 4 L/d until 30 d of age. Calves on the 6L-29d/4L-60d had the smallest MR intake from 30 to 60 d old, followed by the 4L-60d and 6L-60d treatments. Starter intake (kg of dry matter/day) did not differ between groups. It increased from 0.065 kg/d in the first month to 0.386 kg/d in the second month, and to 2.065 kg/d after weaning. Weight gain was greater for calves fed more MR in the first month, but no difference was observed during the second month. After weaning, 6L-60d calves had greater rate of weight gain than others and were heavier at 30, 60, and 90 d of age. Weight of empty forestomachs, ruminal pH, and ammoniac nitrogen concentration were not different among groups. Propionate concentration was lower for 6L-60d calves, but acetate and butyrate concentrations were not influenced by MR feeding strategy. Calves fed more MR until d 30 had greater ruminal epithelium mitotic index. The different MR feeding strategies did not influence papillae length or ruminal epithelium thickness. Lesions such as ruminal parakeratosis or hyperkeratosis were not observed. The MR feeding strategy did not affect glucose concentration, but insulin was higher in 6L-60d calves than in the other groups. Glucose concentration increased with age, whereas insulin decreased until 45 d old, and then started to increase until 90 d. In conclusion, MR feeding strategy did not influence ruminal development. Feeding calves 6 L of MR/d over 60 d resulted in greater rate of weight gain without negative effects on starter intake or forestomach development. The weight advantage that 6L-60d calves obtained preweaning was maintained until 90 d of age.  相似文献   

10.
Sixty-six Holstein male calves [42 ± 6.0 kg of body weight (BW) and 12 ± 3.1 d of age] were housed individually and allocated to 1 of 4 treatments following a 2 × 2 factorial complete randomized design to assess the potential interaction between milk replacer (MR) allowance and fat content in the starter feed. Thus, 4 treatments were evaluated: a low-fat (4.1% fat; LF) starter feed offered along with 4 L/d of MR (4LF), a high-fat (11.2% fat; HF) starter feed plus 4 L/d of MR (4HF), a LF starter feed offered with 6 L/d of MR (6LF), and an HF starter feed offered with 6 L/d of MR (6HF). Calves were fed either 4 or 6 L/d of MR (25% crude protein and 19.2% fat) in 2 offers (0800 and 1630 h) and had ad libitum access to either an LF or an HF starter feed (21.4 and 22.3% crude protein). Calves were weaned at wk 6 of study by halving the daily MR allowance for 1 wk. Individual MR and starter feed intakes were recorded daily and BW was determined weekly. A glucose tolerance test was performed on d 30 of study to evaluate the effects of increased energy provision on glucose metabolism. Apparent feed digestibility was measured for the last 5 d of study. Overall, fat content of starter feed had no effect on solid feed intake. However, during wk 8 of study (after weaning), calves in the LF treatment had greater starter feed intake than HF calves. Calves on 6 L/d of MR had greater BW than calves fed 4 L/d from the second week of study until weaning. After weaning, 6LF calves had lesser BW than 6HF calves. Calves on 6 L/d of MR had greater average daily gain than calves fed 4 L/d, and 6HF calves tended to have the greatest average daily gain. Glucose clearance rate tended to be lesser for HF than for LF calves. In conclusion, offering 6 L/d of MR increased growth performance before weaning and, when offering 6 L/d of MR, feeding a high-fat starter feed resulted in the greatest BW after weaning.  相似文献   

11.
Our objectives were to determine the effect of starter crude protein (CP) content on body composition of male Holstein calves from birth to 10 wk of age in an enhanced early nutrition program, and to compare the enhanced program to a conventional milk replacer program. Calves (n = 45) were purchased on the day of birth and assigned to a randomized block design. Eight calves were harvested at baseline and remaining calves were divided among the following 3 dietary treatments: (1) low rate of milk replacer [LMR; 20.6% CP, 21.7% fat; 1.25% of body weight (BW) as dry matter (DM)] plus conventional starter (CCS; 21.5% CP, DM basis); n = 11 calves; (2) high rate of milk replacer (HMR; 29.1% CP, 17.3% fat; 1.5% of BW as DM for wk 1, 2% of BW as DM wk 2–5, 1% of BW as DM wk 6) plus conventional starter; n = 12 calves; and (3) enhanced milk replacer (HMR) plus high-CP starter (HCS; 26% CP, DM basis); n = 14 calves. A subset of calves (n = 8) was harvested on d 2 to provide baseline data. Calves began treatments on d 2 or 3 of age. Calves were weaned at d 42. Starter was available ad libitum. Calves from each treatment were harvested at 5 (n = 18) and 10 (n = 19) wk of age and divided into 4 fractions: carcass; viscera; blood; and head, hide, feet, and tail. Fractions were analyzed for energy, CP, lipid, and ash. Average weekly starter intake did not differ between enhanced treatments. Gain of BW was greater for calves fed HMR than for LMR, but was unaffected by starter CP. Carcass weights at 5 wk were greater for HMR but did not differ between starter CP content. At 10 wk, carcass weights were heavier for HMR and had a greater percentage of empty BW for HMR + CCS than for HMR + HCS. At 10 wk, the weights of reticulorumen and liver were greater for calves fed HMR + HCS than for those fed HMR + CCS. At 5 wk, empty BW gain for HMR contained more water and less fat and ash than in calves fed LMR. At 10 wk, empty BW gain for calves fed HMR + HCS contained a greater percentage of water and less fat than for calves fed HMR + CCS. Plasma β-hydroxybutyrate was greater after weaning for calves fed HMR + HCS than for those fed HMR + CCS. After weaning, calves fed HMR had greater plasma total protein concentration than those fed LMR, and total protein was greater for calves fed HMR + HCS than those fed HMR + CCS. Plasma urea N was greater for calves fed HMR treatments, and postweaning was greater for calves fed HMR + HCS. A high-CP starter had minimal effect on empty BW gain before weaning, but after weaning it tended to increase mass of reticulorumen and liver.  相似文献   

12.
The benefits of feeding elevated quantities of milk to dairy calves have been well established. However, there is a reluctance to adopt this method of feeding in commercial dairy production because of concerns around growth, health, and ruminal development during weaning. The objective of this study was to characterize the effect of an abrupt (0 d step-down) or gradual (12 d step-down) feeding scheme when calves are fed an elevated plane of nutrition (offered 1.35 kg of milk replacer/d). For this experiment, a total of 54 calves were randomly assigned to an abrupt or a gradual weaning protocol before weaning at 48 d of life. Calves were housed and sampled in individual pens for the duration of the experiment, and milk, starter, and straw intake were measured on a daily basis. Body weight was measured every 6 d, whereas blood, rumen fluid, and fecal samples were collected on d 36 (pre-step-down), 48 (preweaning), and 54 (postweaning) of the experiment. Although the growth rates of the step-down calves were lower from d 37 to weaning (0.62 ± 0.04 vs. 1.01 ± 0.04 kg/d), the postweaning average daily gain was greater compared with the group that was abruptly weaned (0.83 ± 0.06 vs. 0.22 ± 0.06 kg/d). Total ruminal volatile fatty acid was greater in the step-down group on the day of weaning (d 48; 59.80 ± 2.25 vs. 45.01 ± 2.25 mmol), whereas the fecal starch percentage was lower during postweaning compared with the abruptly weaned calves (d 54; 3.31 ± 0.76 vs. 6.34 ± 0.76%). Analysis of the digestive tract of bull calves on d 55 revealed minimal differences between gross anatomy measurements of gut compartments as well as no morphological differences in rumen papillae development, yet the total mass of rumen when full of contents was larger in the step-down calves (7.83 ± 0.78 vs. 6.02 ± 0.78 kg). Under the conditions of this study, the results showcase the benefits of a step-down feeding strategy from an overall energy balance standpoint, due to increased adaptation of the gastrointestinal tract preweaning.  相似文献   

13.
Ruminal metabolic development in calves weaned conventionally or early   总被引:4,自引:0,他引:4  
Eight neonatal bull calves were rumen fistulated and assigned to one of two weaning programs to study the effect of diet and weaning age on ruminal metabolic development. All calves were fed colostrum until 3 d of age and milk until weaning. Calves in the early weaning program were fed milk and a highly palatable, prestarter diet until they consumed 227 g/d and then a mixture of 227 g of prestarter and all the starter diet they would eat. Calves in this group were weaned at 4 wk of age. Calves in the conventional weaning program were fed milk and a starter diet and weaned at 6 wk of age. Eight ruminal samples were collected over 12 h from each calf at 1, 4, 8, and 12 wk of age. Ruminal fluid samples were analyzed for pH, VFA, NH3 N, and L(+)-lactate and D(-)-lactate concentrations. Calves weaned early had lower ruminal pH, higher total VFA concentration, and higher molar proportion of butyrate than conventionally weaned calves. Ruminal NH3 N and lactate concentrations were not significantly affected by the weaning program, although lactate tended to be higher in calves weaned early. Ruminal VFA concentration increased and NH3N concentration decreased with increased feed consumption by calves in both groups. Molar proportions of acetate, isobutyrate, and isovalerate decreased, and those of propionate increased with age in both groups. Apparently, ruminal metabolic development, as evidenced by changes in fermentation products, was faster in calves weaned early than in calves weaned conventionally.  相似文献   

14.
A texturized calf starter containing 5 (control) or 12% molasses [on a dry matter (DM) basis] was fed to dairy calves to determine effects on intake, growth, blood parameters, and rumen development. Forty-six Holstein calves (26 male and 20 female) were started at 2 +/- 1 d of age and studied for 42 d. Starter DM intake was measured and fecal scoring was conducted daily. Growth and blood parameter measurements were conducted weekly. A subset of 6 male calves (3 per treatment) was euthanized at 4 wk of age, and rumen tissue sampled for rumen epithelial growth measurements. Starter sugar content was significantly increased in the starter containing extra molasses. Postweaning and overall starter DM intake, overall total DM intake, daily heart girth change, and final heart girth were significantly decreased, whereas overall average daily gain tended to decrease when calves received starter containing 12% molasses. However, blood volatile fatty acid concentrations were significantly increased when calves received a starter containing 12% molasses. No significant differences were observed between calves receiving starters containing 5 or 12% molasses for all other variables. The data indicates that adding extra molasses to a texturized calf starter decreases intake and structural growth, possibly causing decreased weight gain, but increases blood volatile fatty acid concentrations and slightly increases ruminal development. However, feed handling and physical prehension problems in addition to the negative influences on calf growth and intake do not support increasing starter molasses content to 12% of the supplement.  相似文献   

15.
The aim of the present experiment was to test the hypothesis that a barley-based concentrate would induce an acidic ruminal environment in young calves and that increased milk allowance would alleviate this condition. Eight Holstein calves ruminally cannulated at d 7 ± 1 of age were used to study the effect of variation in barley-based starter concentrate intake induced by 4 different milk allowances (3.10, 4.84, 6.60, and 8.34 kg of milk replacer/d; 123 g of dry matter/kg of milk) on the ruminal environment, blood variables, and fore-stomach development from wk 2 to 5 of age. Twelve ruminal fluid samples were collected during a weekly 24-h sampling in 4 consecutive weeks. Blood samples were collected by venipuncture between 1200 and 1300 h on ruminal sampling days. Rumen papillae development and visceral organ mass were recorded at slaughter. A linear treatment × week effect was observed for concentrate intake, with the calves fed the lowest milk allowance having the fastest increase in concentrate intake whereby these calves reached the same ME intake in wk 5 compared with calves with the highest milk allowance. Effects on ruminal variables were dominated by week of sampling, with minor differences among treatments. Ruminal pH was below 5.5 for 5 to 13 h/d and all calves with concentrate intake above 20 g of dry matter/d were observed to have a daily ruminal pH minimum at pH 5.5 or lower. The ruminal concentration of total volatile fatty acids (VFA) increased from 71 to 133 ± 9 mmol/L in wk 2 to 5 and was characterized by a relatively high molar proportion of propionate, increasing from 34 to 40 mol/100 mol of VFA in wk 2 to 5. In addition, the presence of ethanol and propanol as well as numerous VFA esters points to a ruminal environment with a relatively high hydrogen pressure. Plasma glucose and insulin responded to the highest milk allowance in wk 2 to 4. Plasma VFA and ketone bodies increased with the lowest milk allowance in wk 4 to 5. At slaughter, empty wet weights of the rumen + reticulum and omasum as well as mass of digesta in these compartments were found to decrease linearly and perirenal fat was found to increase linearly with milk allowance, indicating that the milk allowance changed the body composition of the calves. Lengths of ruminal papillae in the atrium and ventral ruminal sac were not affected by treatment. We concluded that the ruminal environment of young calves fed a barley-based starter concentrate was characterized by a low ruminal pH and high VFA concentration regardless of the milk allowance.  相似文献   

16.
Fifteen Holstein male calves were randomly assigned to 1 of 3 dietary treatments according to age and body weight (BW) to determine the effects of feeding different forages sources on rumen fermentation and gastrointestinal tract (GIT) development. Treatments consisted of a starter (20% crude protein, 21% neutral detergent fiber) fed alone (CON) or supplemented with alfalfa (AH) or with oat hay (OH). All calves received 2 L of milk replacer (MR) at 12.5% dry matter twice daily until 49 d of age. Calves received 2 L of the same MR from 50 to 56 d of age and were weaned at 57 d of age. Individual starter, forage, and MR intakes were recorded daily and BW was recorded weekly. A rumen sample was taken weekly to determine rumen pH and volatile fatty acid concentrations. Three weeks after weaning, animals were harvested and each anatomical part of the GIT was separated and weighed with and without contents. Rumen pH was lower in CON than in OH and AH calves. Furthermore, acetate proportion in the rumen liquid tended to be greater in AH than in CON and OH treatments. Total GIT weight, expressed as a percentage of BW, tended to be greater in AH compared with the other 2 treatments. Rumen tissue tended to weigh more in CON than in OH animals. Animals with access to forage tended to have a greater expression of monocarboxylate transporter 1 than CON calves. In conclusion, calves supplemented with oat hay have a better rumen environment than calves offered no forage and do not have an increased gut fill.  相似文献   

17.
The objective of this study was to determine the effects of the canola meal (CM) inclusion rate in pelleted starter mixtures for Holstein heifer calves on dry matter intake, average daily gain, ruminal fermentation, plasma metabolites, and total-tract digestibility. Fifty Holstein heifer calves were blocked by birth date and body weight and, within block, randomly assigned to 1 of 5 pelleted starter treatments with 0, 15, 30, 45, or 60% of the crude protein supplied by CM instead of soybean meal (SBM). Pellets were formulated to be similar in crude protein (24.3%), starch (26.6%), and neutral detergent fiber (17.8%) and were provided to calves starting on d 8 of age, with starter intake measured daily. From 8.0 ± 0.0 (mean ± standard deviation) d of age through d 35.3 ± 2.4, calves were fed milk replacer at 15% of body weight, offered in 3 equal feedings at 0600, 1500, and 2100 h. After that, a gradual 21-d step-down weaning process was imposed, where no further milk replacer was provided starting on d 57.0 ± 0.0. Data for milk replacer and starter intake were calculated to determine weekly averages. On d 62.2 ± 0.8 of age, blood was collected every 4 h and analyzed for glucose, β-hydroxybutyrate, insulin, and urea concentrations. From d 66.2 ± 0.8 of age and extending for 3 d, fecal samples were collected every 12 h with a 3-h daily offset, to estimate fecal nutrient output and to determine apparent total-tract digestibility. Additionally, ruminal fluid (d 70.2 ± 0.8 of age) was sampled at 1300 h through an esophageal tube connected to a vacuum pump. The pH of ruminal fluid was measured, and ruminal fluid was analyzed to determine short-chain fatty acid and ammonia concentrations. Data were analyzed with fixed effect of treatment and random effect of block. Polynomial contrasts were calculated to assess linear, quadratic, and cubic effects with repeated measures statement for variables analyzed over time. Starter intake, average daily gain, body weight, and feed efficiency did not differ among treatments. Crude protein and ether extract digestibility were affected in a cubic manner, where CP was greatest for CM0, CM30, and CM45, and ether extract digestibility was least for CM15 and CM60. The molar proportion of acetate responded cubically, but the proportions of propionate and butyrate did not differ among treatments. Ruminal ammonia and plasma urea concentrations were not affected by CM inclusion rate. In conclusion, CM can replace up to 60% of the CP provided from SBM without affecting starter intake and growth of calves.  相似文献   

18.
《Journal of dairy science》2022,105(4):3113-3128
Early development of the rumen, rumination, and fermentation is highly important in dairy calves. Yet, common rearing practices with feeding of concentrate-rich starters may jeopardize them because of lacking physically effective fiber (peNDF). The main objective of this study was to establish the influence of the composition of the calf starter feed (only forage with 2 different qualities or concentrate-rich starter diet) on chewing behavior, rumen development, rumen and hindgut fermentation, and selected systemic health and stress variables of dairy calves. The experiment was carried out with 40 newborn Holstein-Friesian calves, randomly assigned to 4 different solid feed treatments: MQH = 100% medium-quality hay (9.4 MJ metabolizable energy, 149 g of crude protein, and 522 g of neutral detergent fiber/kg of dry matter); HQH = 100% high-quality hay (11.2 MJ of metabolizable energy, 210 g of crude protein, 455 g of neutral detergent fiber/kg of dry matter); MQH+C = 30% MQH + 70% starter concentrate; HQH+C = 30% HQH + 70% starter concentrate). All calves were up to 14 wk in the trial and received acidified whole milk ad libitum in the first 4 wk of life, thereafter in reduced quantity until weaning on 12 wk of age. Water and the solid feed treatments were available ad libitum throughout the trial. Chewing activity was measured in wk 4, 6, 10, and 12 using RumiWatch halters. Until wk 3, rumen fluid, feces and blood were sampled weekly, thereafter every 2 wk. Rumen mucosal thickness (RMT) was measured on the same days with rumen fluid samples. Data showed that calves fed the HQH diet consumed more peNDF and this was associated with longer rumination time (591 min/d) and more ruminating boli (709 boli/d) than calves fed concentrate-rich diets (MQH+C: 430 min/d, 518 boli/d; HQH+C: 430 min/d, 541 boli/d), whereas the MQH group was intermediate (539 min/d, 644 boli/d). Ruminal and fecal pH were higher in calves fed only hay (especially MQH) compared with calves with concentrate supplementation. In both hay-fed groups, ruminal and fecal short-chain fatty acids were shifted toward acetate, whereas only the HQH diet increased the butyrate proportion in the ruminal short-chain fatty acids profile. Ruminal ammonia concentration was at a high level only in the first 3 wk and decreased thereafter. Feeding HQH tended to increase ruminal ammonia, likely because of its high crude protein content and ruminal degradability as well as lower assimilation from rumen microbes. The RMT similarly, though nonlinearly, increased in all groups over the course of the experiment. When using RMT as an indicator of rumen development in dairy calves in the practice, our data suggest an RMT of 1.7 mm and >2 mm at wk 5 and 10 of life, respectively. Feeding did not affect the blood levels of aspartate aminotransferase, gamma glutamyl transferase, glutamate dehydrogenase, and cortisol. In conclusion, feeding high-quality hay, instead of concentrate-rich starter feeds, resulted in improved rumination and ruminal fermentation profile, without affecting ruminal pH and systemic and stress health variables.  相似文献   

19.
Structural growth, feed consumption, rumen development, metabolic response, and immune response were studied in Holstein calves fed milk through either a conventional method or a step-down (STEP) method. In the conventional method, calves (n = 20) were fed colostrum and then milk at a rate of 10% of their BW for the entire period of 44 d. In the STEP method, calves (n = 20) were given colostrum and then milk at a rate of 20% of their BW for 23 d, which was reduced (between d 24 to 28) to 10% of their BW for the remaining 16 d. The calves on both methods were weaned gradually by diluting milk with water between d 45 and 49. After weaning, feed consumption, structural growth, and body weight gain were monitored until calves were 63 d of age. At d 63, twelve calves (6/treatment) were euthanized and rumen papillae length, papillae width, rumen wall thickness, and emptied forestomach weight were recorded. At wk 4, 7, and 9, ruminal contents were collected to enumerate rumen metabolites. The STEP-fed calves consumed a greater amount of milk than conventionally fed calves during the pre-STEP (d 1 to 28), post-STEP (d 29 to 49), and preweaning (d 1 to 49) periods. Consumption of starter and hay was greater during the pre-STEP period and lesser during the post-STEP and postweaning (d 50 to 63) periods in calves on the conventional method than on the STEP method. Body weight gain and structural growth measurements of calves were greater on the STEP method than on the conventional method. A hypophagic condition caused by greater milk consumption depressed solid feed intake of STEP-fed calves during the pre-STEP period, and a hyperphagic response caused by a reduced nutrient supply from milk triggered their consumption of solid feed during the post-STEP and postweaning periods. Ruminal pH and concentrations of ammonia, total volatile fatty acids, acetate, propionate, butyrate, and plasma β-hydroxybutyrate were higher in calves on the STEP method and at weaning and postweaning (d 63) were lower in calves on the conventional method. Emptied weight of the forestomach, rumen wall thickness, papillae length, papillae width, and papillae concentration were higher in calves on the STEP method than in those on the conventional method. Blood glucose was lower, and blood urea nitrogen and β-hydroxybutyrate at weaning and postweaning were higher in STEP-fed calves. Serum IgG, IgA, and triglycerides for 1, 2, and 3 wk of age were higher in calves on the STEP method than in those on the conventional method. In conclusion, greater feed consumption, BW gain, and structural growth, and a more metabolically and physically developed rumen were observed in calves on the STEP method than in those on the conventional method.  相似文献   

20.
Our objectives were to determine the effect of starter crude protein (CP) content on growth of Holstein calves from birth to 10 wk of age in an enhanced early nutrition program, and to compare the enhanced program to a conventional milk replacer program. Calves (64 female, 25 male) were assigned to 3 treatments in a randomized block design: 1) conventional milk replacer (20% CP, 20% fat) plus conventional starter [19.6% CP, dry matter (DM) basis], 2) enhanced milk replacer (28.5% CP, 15% fat) plus conventional starter, and 3) enhanced milk replacer plus high-CP starter (25.5% CP, DM basis). Calves began treatments (n=29, 31, and 29 for treatments 1 to 3) at 3 d of age. Conventional milk replacer (12.5% solids) was fed at 1.25% of birth body weight (BW) as DM daily in 2 feedings from wk 1 to 5 and at 0.625% of birth BW once daily during wk 6. Enhanced milk replacer (15% solids) was fed at 1.5% of BW as DM during wk 1 and 2% of BW as DM during wk 2 to 5, divided into 2 daily feedings. During wk 6, enhanced milk replacer was fed at 1% of BW as DM once daily. Calves were weaned at d 42. Starter was available for ad libitum intake starting on d 3. Starter intake was greater for calves fed conventional milk replacer. For calves fed enhanced milk replacer, starter intake tended to be greater for calves fed enhanced starter. During the weaning period, enhanced starter promoted greater starter DM intake than the conventional starter. Over the 10-wk study, the average daily gain of BW (0.64, 0.74, and 0.80 kg/d) was greater for calves fed enhanced milk replacer with either starter and, for calves fed enhanced milk replacer, tended to be greater for calves fed high-CP starter. Rates of change in withers height, body length, and heart girth were greater for calves fed enhanced milk replacer but did not differ between starter CP concentrations. The postweaning BW for enhanced milk replacer treatments was greater for calves receiving the enhanced starter at wk 8 (73.7, 81.3, and 85.8 kg) and wk 10 (88.0, 94.9, and 99.9 kg). Starter CP content did not affect height, length, or heart girth within enhanced milk replacer treatments. Regression analysis showed that gain of BW during the first week postweaning (wk 7) increased with greater 3-d mean starter intake in the week before weaning. Starter with 25.5% CP (DM basis) provided modest benefits in starter intake (particularly around weaning) and growth for dairy calves in an enhanced early nutrition program compared with a conventional starter (19.6% CP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号