首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
Our objectives were to (1) determine whether the abomasal infusion of behenic acid (C22:0) elevated hepatic ceramide relative to palmitic acid (C16:0) or docosahexaenoic acid (C22:6n-3) infusion; (2) assess whether the abomasal infusion of choline chloride or l-serine elevated hepatic phosphatidylcholine (PC) in cows abomasally infused with C16:0; and (3) characterize the PC lipidome in cows abomasally infused with C22:6n-3, relative to C16:0 or C22:0 infusion. In a 5 × 5 Latin square design, 5 rumen-cannulated Holstein cows (214 ± 4.9 DIM; 3.2 ± 1.1 parity) were enrolled in a study with 6-d periods. Abomasal infusates consisted of (1) palmitic acid (PA; 98% C16:0); (2) PA + choline chloride (PA+C; 50 g/d choline chloride); (3) PA + l-serine (PA+S; 170 g/d l-serine); (4) behenic acid (BA; 92% C22:0); and (5) an algal oil rich in docosahexaenoic acid (DHA; 44% C22:6n-3). Emulsion infusates provided 301 g/d of total fatty acids containing a minimum of 40 g/d of C16:0. Cows were fed a corn silage-based diet. Milk was collected on d ?2, ?1, 5, and 6. Blood was collected and liver biopsied on d 6 of each period. Although we did not detect differences in milk yield, milk fat yield and content were lower in cows infused with DHA relative to PA. Plasma triacylglycerol concentrations were lower with DHA treatment relative to PA or BA. Cows infused with DHA had lower plasma insulin concentrations relative to cows infused with PA only. For objective 1, hepatic ceramide-d18:2/22:0 was highest in cows infused with BA relative to other treatments. For objective 2, plasma free choline concentrations were greater in PA+C cows relative to PA; however, we did not observe this effect with PA+S. Plasma total PC concentrations were similar for all treatments. Regarding the hepatic lipidome, a total of 18 hepatic PC were higher (e.g., PC-16:1/18:2) and 25 PC were lower (e.g., PC-16:0/22:6) with PA+C infusion relative to PA. In addition, 17 PC were higher (e.g., PC-20:3/22:5) and 21 PC were lower (e.g., PC-18:0/22:6) with PA+S infusion relative to PA. For objective 3, hepatic concentrations of many individual saturated PC (e.g., PC-18:0/15:0) were lower with DHA relative to other treatments. Hepatic concentrations of highly unsaturated PC with very-long-chain fatty acids (e.g., PC-14:0/22:6) were higher in DHA-infused cows relative to PA, PA+C, PA+S, or BA. The abomasal infusion of emulsions containing palmitic acid, palmitic acid with choline chloride or serine, behenic acid, or docosahexaenoic acid influence the hepatic ceramide and PC profiles of lactating cows.  相似文献   

2.
The objective of our study was to evaluate the effects of feeding triglyceride and fatty acid (FA) supplements enriched in palmitic acid (PA; C16:0) on production and nutrient digestibility responses of mid-lactation dairy cows. Fifteen Holstein cows (137 ± 49 d in milk) were randomly assigned to a treatment sequence in a 3 × 3 Latin square design. Treatments consisted of a control diet (CON; no added PA) or 1.5% FA added as either a FA supplement (PA-FA) or a triglyceride supplement (PA-TG). The PA supplements replaced soyhulls, and diets were balanced for glycerol content. Periods were 21 d in length with sample and data collection occurring during the final 5 d. Compared with CON, PA treatments increased dry matter (66.5 vs. 63.9%) and neutral detergent fiber (NDF) apparent digestibility (42.0 vs. 38.2%). Although PA treatments tended to increase 18-carbon FA apparent digestibility (79.1 vs. 77.9%), PA treatments decreased 16-carbon (63.1 vs. 75.8%) and total FA (72.0 vs. 76.5%) apparent digestibilities compared with CON. The PA treatments increased milk fat content (3.60 vs. 3.41%), milk fat yield (1.70 vs. 1.60 kg/d), yield of 16-carbon milk FA (570 vs. 471 g/d), 3.5% fat-corrected milk (47.6 vs. 46.5 kg/d), and energy-corrected milk (47.4 vs. 46.6 kg/d) compared with CON. The PA treatments did not affect dry matter intake (28.5 vs. 29.2 kg/d), milk yield (47.0 vs. 47.4 kg/d), milk protein yield (1.42 vs. 1.45 kg/d), milk lactose yield (2.29 vs. 2.31 kg/d), yield of <16-carbon milk FA (360 vs. 370 g/d), yield of >16-carbon milk FA (642 vs. 630 g/d), body weight (720 vs. 723 kg), or body condition score (3.14 vs. 3.23). We did not observe differences in digestibilities of dry matter, NDF, and 18-carbon FA between PA-TG and PA-FA. In contrast, PA-FA increased 16-carbon (68.6 vs. 57.6%) and total FA apparent digestibility (73.8 vs. 70.1%) compared with PA-TG. This resulted in PA-FA supplementation increasing the apparent digestibility of the PA supplement by ~10 percentage points compared with PA-TG. Compared with PA-TG, PA-FA increased 16-carbon FA intake by 60 g/d, absorbed 16-carbon FA by 86 g/d, and absorbed total FA by 85 g/d. Compared with PA-TG, PA-FA increased dry matter intake (29.1 vs. 27.8 kg/d), yield of 16-carbon milk FA (596 vs. 545 g/d), and tended to increase milk yield (47.6 vs. 46.4 kg/d), milk fat yield (1.70 vs. 1.66 kg/d), and 3.5% fat-corrected milk (48.1 vs. 47.2 kg/d). In conclusion, the production response of dairy cows to PA tended to be greater for a FA supplement compared with a triglyceride supplement. Overall, PA increased NDF digestibility, milk fat yield, energy-corrected milk, and feed efficiency in mid-lactation dairy cows.  相似文献   

3.
Fat supplements based on palmitic acid (PA) or stearic acid (SA) are expected to have different effects on milk production and nutrient metabolism in lactating dairy cows. In this study, the effects of prilled fat supplements containing different levels of PA and SA were tested in 12 high-producing multiparous cows (pretrial milk yield = 53.4 ± 8.7 kg/d; mean ± SD) arranged in a 4 × 4 Latin square design with 21-d periods. Treatments were control (CON; no supplemental fat), an enriched PA supplement (HP; 91% C16:0), an enriched SA supplement (HS; 92.5% C18:0), and a blend of PA and SA (INT) fed at 1.95% of diet dry matter. All supplements contained oleic acid at approximately 5% of fatty acids. The HP treatment decreased dry matter intake (DMI) by 1.9 kg/d and 1.1 kg/d compared with SA and CON, respectively. Milk yield was not changed by treatment, but INT increased energy-corrected milk by 2.7 kg/d compared with HS. The HP and INT treatments increased milk fat yield by 0.11 and 0.14 kg/d compared with CON, respectively. Additionally, HP decreased yield of <16 carbon fatty acids (FA; de novo synthesized) by 44 g/d and 43 g/d compared with INT and CON, respectively. The HP treatment increased 16-carbon FA (mixed source) by 155 g/d compared with CON and 64 g/d relative to INT. No effect of treatment on apparent total-tract digestibility of dry matter, organic matter, or neutral detergent fiber was detectable. The INT and HS treatments decreased total-tract digestibility of 16-carbon FA by 10.3 and 10.5 percentage units compared with HP, respectively. Total-tract digestibility of 18-carbon FA was lowest in the HS diet and highest with HP. In conclusion, supplementing PA increased milk fat yield compared with control and SA, but supplementing a mixture of PA and SA increased energy-corrected milk without decreasing intake. The FA profile of fat supplements influences their digestibility and effects on DMI and milk and milk fat synthesis.  相似文献   

4.
The objective of our study was to evaluate the effects of timing of palmitic acid (C16:0) supplementation during early lactation on nutrient digestibility, energy intake and balance, and metabolic responses of dairy cows. Fifty-two multiparous cows were used in a randomized complete block design experiment. During the fresh (FR) period (1–24 d in milk) cows were assigned to either a control diet containing no supplemental fat (CON) or a C16:0-supplemented diet [PA; 1.5% of diet dry matter (DM)]. During the peak (PK) period (25–67 d in milk) cows were assigned to either a CON diet or a PA diet (1.5% of diet DM) in a 2 × 2 factorial arrangement of treatments considering the diet that they received during the FR period. During the FR period, compared with CON, PA increased DM digestibility by 3.0 percentage units and neutral detergent fiber (NDF) digestibility by 4.4 percentage units, and the increase in these variables was consistent over time. Although PA did not affect 18-carbon fatty acid (FA) digestibility, it decreased 16-carbon FA digestibility by 10.8 percentage units and total FA digestibility by 4.7 percentage units compared with CON. We observed a tendency for an interaction between treatment and time for total FA digestibility and 16-carbon FA digestibility due to the difference in FA digestibility between PA and CON reducing over time. Compared with CON, PA increased digestible energy intake by 3.9 Mcal/d, metabolizable energy intake by 3.5 Mcal/d, and net energy for lactation intake by 2.5 Mcal/d. The PA diet also increased milk energy output, negative energy balance, and plasma nonesterified fatty acid concentration and reduced plasma insulin concentration. We also observed a tendency for an interaction between treatment and time for energy balance due to cows receiving the PA treatment being in a greater negative energy balance over time. During the PK period, PA increased DM digestibility by 2.9 percentage units and NDF digestibility by 3.5 percentage units compared with CON. Although PA decreased 16-carbon FA digestibility by 7.0 percentage units, PA did not affect 18-carbon FA digestibility or total FA digestibility. Feeding PA during the PK period increased energy intake and milk energy output and did not affect energy balance. In conclusion, feeding a C16:0 supplement to early-lactation cows consistently increased DM and NDF digestibilities and energy intake compared with a control diet containing no supplemental fat. Feeding C16:0 markedly increased milk energy output in both the FR and PK periods but increased negative energy balance only in the FR period.  相似文献   

5.
《Journal of dairy science》2022,105(4):3102-3112
We evaluated the effects of abomasal infusion of emulsifiers on fatty acid (FA) digestibility and milk production of lactating dairy cows. All emulsifiers examined were polysorbates, nonionic surfactants, consisting of a polyethoxylated sorbitan esterified with FA. The polysorbates tested in this study consisted of the same polyethoxylated sorbitan base but differed by the FA esterified to it. Eight rumen-cannulated multiparous cows (89 ± 13 d in milk) were assigned to a treatment sequence in 4 × 4 Latin squares with 18-d periods consisting of 7 d of washout and 11 d of infusion. Treatments were abomasal infusions of water only (CON) or 30 g/d of different emulsifiers as follows: polysorbate-C16:0 (T40), polysorbate-C18:0+C16:0 (T60), and polysorbate-C18:1 (T80). Emulsifiers were dissolved in water and delivered at 6-h intervals (total daily infusion was divided into 4 equal infusions per day). Cows were fed the same diet that contained (% diet dry matter) 32.1% neutral detergent fiber, 15.7% crude protein, 25.8% starch, and 3.32% FA (including 1.92% FA from a saturated FA supplement containing 34.2% C16:0 and 47.7% C18:0). The T80 treatment increased total FA digestibility compared with CON (5.40 percentage units) and T60 (3.90 percentage units) and tended to increase it compared with T40. Also, T40 tended to increase and T80 increased (4.80 percentage units) 16-carbon FA digestibility compared with CON. The T80 treatment increased 18-carbon FA digestibility compared with the other treatments. The T40 treatment tended to increase and T80 increased total FA absorption compared with CON (53 g/d) and T60 (52 g/d). Both T40 and T80 increased the absorption of 16-carbon FA compared with CON and T60. The T60 treatment did not differ from CON for any digestibility variable. Both T40 and T80 increased the yields of milk fat, 3.5% fat-corrected milk, and de novo, mixed, and preformed milk FA compared with CON. In conclusion, not all emulsifiers increased FA digestibility. Compared with CON, T80 increased the digestibility and absorption of total, 16-, and 18-carbon FA. The T40 treatment tended to increase and T80 increased total FA absorption and the yields of milk fat and 3.5% FCM compared with CON. Milk fat yield was increased by increases in de novo, mixed, and preformed milk FA. In our short-term infusion study, results suggest that the predominant FA present in the polysorbate affects its ability to improve FA digestibility. Overall, FA digestibility and absorption were improved the most when cows received the T80 treatment.  相似文献   

6.
We evaluated the effects of fatty acid (FA) supplement blends containing 60% palmitic acid (C16:0) and either 30% stearic acid (C18:0) or 30% oleic acid (cis-9 C18:1) on nutrient digestibility and milk production of low- and high-producing dairy cows. Twenty-four multiparous Holstein cows [118 ± 44 d in milk (DIM)] were divided into 2 blocks by milk production and then randomly assigned to treatment sequence in four 3 × 3 Latin squares within production level, balanced for carryover effects in three consecutive 21-d periods. Cows were blocked by milk yield and assigned to 1 of 2 groups (n = 12 per group): (a) low group (42.5 ± 3.54 kg/d; 147 ± 42 DIM) and (b) high group (55.8 ± 3.04 kg/d; 101 ± 34 DIM). Commercially available fat supplements were combined to provide treatments that consisted of the following: (1) control (CON; diet with no supplemental FA), (2) FA supplement blend containing 60% C16:0 and 30% C18:0 (PA+SA), and (3) FA supplement blend containing 60% C16:0 and 30% cis-9 C18:1 (PA+OA) The FA blends were fed at 1.5% of dry matter (DM) and replaced soyhulls from CON. Preplanned contrasts were (1) overall effect of FA treatments [CON vs. the average of the FA treatments (FAT); 1/2 (PA+SA + PA+OA)], and (2) effect of FA supplement (PA+SA vs. PA+OA). Regardless of production level, overall FAT reduced DMI compared with CON. Also, regardless of level of milk production, PA+OA increased total-tract FA digestibility compared with PA+SA. Treatment by production level interactions were observed for neutral detergent fiber (NDF) digestibility, total FA intake, and the yields of 3.5% fat-corrected milk (FCM), energy-corrected milk (ECM), and milk fat. In low-producing cows, FAT increased DM and NDF digestibility compared with CON. In high-producing cows PA+SA increased DM and NDF digestibility compared with PA+OA. In low-producing cows, PA+SA increased 3.5% FCM, ECM, and milk fat yield compared with PA+OA. However, in high-producing cows PA+OA tended to increase 3.5% FCM compared with PA+SA. In conclusion, low-producing cows responded better to a FA blend containing 60% C16:0 and 30% C18:0, whereas high-producing dairy cows responded more favorably to a FA blend containing 60% C16:0 and 30% cis-9 C18:1. However, further research is required to validate our observations that higher-yielding cows have improved production responses when supplemented with cis-9 C18:1 compared with C18:0.  相似文献   

7.
Deoiled soy lecithin is a feed additive enriched in phospholipids. Our study evaluated the effects of dietary deoiled soy lecithin supplementation on (1) milk production and composition, (2) plasma and milk fatty acid (FA) content and yield, and (3) apparent FA digestibility and absorption in lactating dairy cows fed fractionated palm fat. In a split-plot Latin square design, 16 Holstein cows (160 ± 7 days in milk; 3.6 ± 1.2 parity) were randomly allocated to a main plot receiving a corn silage and alfalfa haylage-based diet with palm fat containing either moderate (MPA) or high palmitic acid (HPA) content at 1.75% of ration dry matter (72 or 99% palmitic acid, respectively; n = 8/palm fat diet). On each palm fat diet, deoiled soy lecithin was top-dressed at 0, 0.12, 0.24, or 0.36% of ration dry matter in a replicated 4 × 4 Latin square design. Following a 14-d covariate period, lecithin supplementation spanned 14 d, with milk and blood collected during the final 3 d. Milk composition and pooled plasma markers were measured. The statistical model included the fixed effects of palm fat type, lecithin dose, period, and the interaction between palm fat type and lecithin dose. The random effect of cow nested within palm fat group was also included. Lecithin linearly decreased dry matter intake. In cows fed HPA, lecithin feeding reduced milk fat content and tended to decrease milk fat yield. Although no changes in milk yield were observed, a quadratic reduction in 3.5% fat-corrected milk was observed with increasing lecithin dose. Lecithin linearly increased energy-corrected milk efficiency in cows fed MPA. Lecithin supplementation also decreased milk urea nitrogen, relative to unsupplemented cows. The proportion of 16-carbon FA in milk fat decreased linearly with lecithin dose, whereas 18-carbon FA increased linearly. Lecithin reduced de novo FA (<16-carbon) content and tended to increase preformed FA (>16-carbon) content in a linear manner. Compared with MPA, HPA diets reduced apparent total and 16-carbon FA digestibility and absorption. Deoiled soy lecithin feeding did not modify FA digestibility or absorption. Our observations suggest that soy lecithin feeding modifies rumen digestion to reduce dry matter intake and change milk composition.  相似文献   

8.
The objective of this study was to evaluate the effects of varying the ratio of dietary palmitic (C16:0), stearic (C18:0), and oleic (cis-9 C18:1) acids in basal diets containing soyhulls or whole cottonseed on nutrient digestibility, energy partitioning, and production response of lactating dairy cows. Twenty-four mid-lactation multiparous Holstein cows were used in a split-plot Latin square design. Cows were allocated to a main plot receiving either a basal diet with soyhulls (SH, n = 12) or a basal diet with whole cottonseed (CS, n = 12) that was fed throughout the experiment. Within each plot a 4 × 4 Latin square arrangement of treatments was used in 4 consecutive 21-d periods. Treatments were (1) control (CON; no supplemental fat), (2) high C16:0 supplement [PA; fatty acid (FA) supplement blend provided ~80% C16:0], (3) C16:0 and C18:0 supplement (PA+SA; FA supplement blend provided ~40% C16:0 + ~40% C18:0), and (4) C16:0 and cis-9 C18:1 supplement (PA+OA; FA supplement blend provided ~45% C16:0 + ~35% cis-9 C18:1). Interactions between basal diets and FA treatments were observed for dry matter intake (DMI) and milk yield. Among the SH diets, PA and PA+SA increased DMI compared with CON and PA+OA treatments, whereas in the CS diets PA+OA decreased DMI compared with CON. The PA, PA+SA, and PA+OA treatments increased milk yield compared with CON in the SH diets. The CS diets increased milk fat yield compared with the SH diets due to the greater yield of de novo and preformed milk FA. The PA treatment increased milk fat yield compared with CON, PA+SA, and PA+OA due to the greater yield of mixed-source (16-carbon) milk FA. The PA treatment increased 3.5% fat-corrected milk compared with CON and tended to increase it compared with PA+SA and PA+OA. The CS diets increased body weight (BW) change compared with the SH diets. Additionally, PA+OA tended to increase BW change compared with CON and PA and increased it in comparison with PA+SA. The PA and PA+OA treatments increased dry matter and neutral detergent fiber digestibility compared with PA+SA and tended to increase them compared with CON. The PA+SA treatment reduced 16-carbon, 18-carbon, and total FA digestibility compared with the other treatments. The CS diets increased energy partitioning toward body reserves compared with the SH diets. The PA treatment increased energy partitioning toward milk compared with CON and PA+OA and tended to increase it compared with PA+SA. In contrast, PA+OA increased energy partitioned to body reserves compared with PA and PA+SA and tended to increase it compared with CON. In conclusion, milk yield responses to different combinations of FA were affected by the addition of whole cottonseed in the diet. Among the combinations of C16:0, C18:0, and cis-9 C18:1 evaluated, fat supplements with more C16:0 increased energy output in milk, whereas fat supplements with more cis-9 C18:1 increased energy storage in BW. The combination of C16:0 and C18:0 reduced nutrient digestibility, which most likely explains the lower performance observed compared with other treatments.  相似文献   

9.
The objective of our study was to evaluate the dose-response effects of a stearic acid (C18:0)-enriched supplement on nutrient digestibility, production responses, and the maximum amount of C18:0 that can be incorporated into the milk fat of dairy cows. Multiparous Holstein cows (n = 32; 145 ± 66 d in milk) with a wide range in milk yield (30 to 70 kg/d) were blocked by milk yield and assigned to replicated 4 × 4 Latin squares. Treatments were diets supplemented with a C18:0-enriched supplement (SA; 93% C18:0) at 0, 0.80, 1.50, or 2.30% of diet dry matter (DM). Periods were 21 d with the final 5 d used for data and sample collection. Dry matter intake increased linearly as SA supplementation increased. Supplementation of SA had no effect on the yield of milk or milk components. Due to the increase in DM intake, SA linearly reduced the ratio of energy-corrected milk to DM intake. Supplementation of SA did not affect body weight. Increasing SA reduced digestibility of 16-carbon, 18-carbon, and total fatty acids (FA), with the reduction in digestibility of 18-carbon FA being approximately 30 percentage units from the 0.0 to 2.30% SA supplemented diets. Supplementation of SA linearly increased concentrations of preformed milk fatty acids (FA) but did not affect the yield of preformed milk FA. Yields of C18:0 plus cis-9 C18:1 were increased by SA supplementation; however, the increase from 0 to 2.3% SA was only 16 g/d. The concentration and yield of de novo and 16-carbon milk FA were unaffected by SA supplementation. In conclusion, increasing doses of SA decreased FA digestibility and had little effect on production parameters. Although SA increased the yield of C18:0 and cis-9 C18:1 in milk fat, it had no overall effect on milk fat yield. The lack of production responses to a C18:0-enriched fat supplement was most likely associated with the marked decrease in FA digestibility.  相似文献   

10.
The effect of a high-palmitic acid fat supplement was tested in 12 high-producing (mean = 42.1 kg/d) and 12 low-producing (mean = 28.9 kg/d) cows arranged in a replicated 3 × 3 Latin square design. Experimental periods were 21 d, with 18 d of diet adaptation and 3 d of sample collection. Treatments were (1) control (no supplemental fat), (2) high-palmitic acid (PA) supplement (84% C16:0), and (3) Ca salts of palm fatty acid (FA) supplement (Ca-FA). The PA supplement had no effect on milk production, but decreased dry matter intake by 7 and 9% relative to the control in high- and low-producing cows, respectively, and increased feed efficiency by 8.5% in high-producing cows compared with the control. Milk fat concentration and yield were not affected by PA relative to the control in high- or low-producing cows, although PA increased the yield of milk 16-C FA by more than 85 g/d relative to the control. The Ca-FA decreased milk fat concentration compared with PA in high-, but not in low-producing cows. In agreement, Ca-FA dramatically increased milk fat concentration of trans-10 C18:1 and trans-10, cis-12 conjugated linoleic acid (>300%) compared with PA in high-producing cows, but not in low-producing cows. No effect of treatment on milk protein concentration or yield was detected. The PA supplement also increased 16-C FA apparent digestibility by over 10% and increased total FA digestibility compared with the control in high- and low-producing cows. During short-term feeding, palmitic acid supplementation did not increase milk or milk fat yield; however, it was efficiently absorbed, increased feed efficiency, and increased milk 16-C FA yield, while minimizing alterations in ruminal biohydrogenation commonly observed for other unsaturated fat supplements. Longer-term experiments will be necessary to determine the effects on energy balance and changes in body reserves.  相似文献   

11.
《Journal of dairy science》2021,104(12):12616-12627
Our objective was to determine whether abomasal infusions of increasing doses of oleic acid (cis-9 C18:1; OA) improved fatty acid (FA) digestibility and milk production of lactating dairy cows. Eight rumen-cannulated multiparous Holstein cows (138 d in milk ± 52) were randomly assigned to treatment sequence in a replicated 4 × 4 Latin square design with 18-d periods consisting of 7 d of washout and 11 d of infusion. Production and digestibility data were collected during the last 4 d of each infusion period. Treatments were 0, 20, 40, or 60 g/d of OA. We dissolved OA in ethanol before infusions. The infusate solution was divided into 4 equal infusions per day, occurring every 6 h, delivering the daily cis-9 C18:1 for each treatment. Animals received the same diet throughout the study, which contained (percent diet dry matter) 28% neutral detergent fiber, 17% crude protein, 27% starch, and 3.3% FA (including 1.8% FA from a saturated FA supplement containing 32% C16:0 and 52% C18:0). Infusion of OA did not affect intake or digestibility of dry matter and neutral detergent fiber. Increasing OA from 0 to 60 g/d linearly increased the digestibility of total FA (8.40 percentage units), 16-carbon FA (8.30 percentage units), and 18-carbon FA (8.60 percentage units). Therefore, increasing OA linearly increased absorbed total FA (162 g/d), 16-carbon FA (26.0 g/d), and 18-carbon FA (127 g/d). Increasing OA linearly increased milk yield (4.30 kg/d), milk fat yield (0.10 kg/d), milk lactose yield (0.22 kg/d), 3.5% fat-corrected milk (3.90 kg/d), and energy-corrected milk (3.70 kg/d) and tended to increase milk protein yield. Increasing OA did not affect the yield of mixed milk FA but increased yield of preformed milk FA (65.0 g/d) and tended to increase the yield of de novo milk FA. Increasing OA quadratically increased plasma insulin concentration with an increase of 0.18 μg/L at 40 g/d OA, and linearly increased the content of cis-9 C18:1 in plasma triglycerides by 2.82 g/100 g. In conclusion, OA infusion increased FA digestibility and absorption, milk fat yield, and circulating insulin without negatively affecting dry matter intake. In our short-term infusion study, most of the digestion and production measurements responded linearly, indicating that 60 g/d OA was the best dose. Because a quadratic response was not observed, improvements in FA digestibility and production might continue with higher doses of OA, which deserves further attention.  相似文献   

12.
《Journal of dairy science》2023,106(4):2395-2407
The form of a lipid supplement, its degree of saturation, and its fatty acid (FA) profile greatly influence digestibility and cow productive response. The objective in this study was to examine the effect of fat supplements that differ in their form or FA profile on nutrient digestibility and cow performance. Forty-two mid-lactation cows (128 ± 53 d) were assigned to 3 treatment groups according to milk yield, days in milk, and body weight. For 13 wk, the cows were fed rations that contained (on a dry matter basis) (1) 2.4% of calcium salts of fatty acids (CSFA) consisting of 45% palmitic acid (PA) and 35% oleic acid (OA; CS45:35); (2) 2.4% of CSFA consisting of 80% PA and 10% OA (CS80:10); or (3) 2.0% of free FA consisting of 80% PA and 10% OA (FF80:10). Rumen samples were taken to measure the ammonia and volatile FA concentrations, and fecal samples were taken to measure the digestibility. Preplanned comparisons were CS45:35 versus CS80:10 to assess 2 CSFA supplements with different FA profiles, and CS80:10 versus FF80:10 to assess similar FA profiles in different forms. Compared with CS45:35, CS80:10 decreased the milk yields, increased the fat percentage, and tended to increase the energy-corrected milk (ECM) yields. The fat percentage of milk was highest in the FF80:10 cows (4.02%), intermediate in the CS80:10 cows (3.89%), and lowest in the CS45:35 cows (3.75%). Compared with CS80:10, FF80:10 increased milk yields (50.1 vs. 49.4 kg/d, respectively), tended to increase fat percentage, and increased 4% fat-corrected milk (4% FCM; 49.1 vs. 47.7 kg/d, respectively) and ECM yields (49.5 vs. 48.2 kg/d, respectively). Treatment had no effect on dry matter intake (DMI), and compared with CS80:10 cows, the calculated energy balance was lower in the FF80:10 cows. The 4% FCM/DMI and ECM/DMI ratios were higher in the FF80:10 group compared with the CS80:10 group. Compared with the CS80:10 cows, the FF80:10 cows had a lower rumen pH, higher propionate, lower acetate/propionate ratio, and higher total VFA. Compared with CS45:35 cows, the apparent total-tract digestibilities of neutral detergent fiber and acid detergent fiber were higher in CS80:10 cows; whereas, the apparent total-tract digestibilities of dry matter, organic matter, protein, neutral detergent fiber, and acid detergent fiber were higher in the CS80:10 cows compared with the FF80:10 cows. Compared with the CS80:10 group, the apparent digestibility of total FA was 13.0 percentage points lower in the FF80:10 cows (79.1 vs. 66.1%, respectively), and similarly, the digestibilities of 16-carbon and 18-carbon FA were lower in the FF80:10 cows than in the CS80:10 cows. In conclusion, the form, more than the FA profile of fat supplements, influenced digestibility. Further, the CSFA supplements were more digestible than the free fatty acids, regardless of the FA profile. However, energy partitioning toward production appeared to be higher in the FF80:10 cows, although the digestibility of nutrients was lower than in the CSFA product with a similar FA profile.  相似文献   

13.
《Journal of dairy science》2019,102(11):9842-9856
The objective of our study was to evaluate the effects of altering the dietary ratio of palmitic (C16:0) and oleic (cis-9 C18:1) acids on nutrient digestibility, energy partitioning, and production responses of lactating dairy cows. Cows were blocked by milk yield and assigned to 3 groups (12 cows per group) in a main plot: low (45.2 ± 1.7 kg/d), medium (53.0 ± 1.6 kg/d), and high (60.0 ± 1.9 kg/d). Within each production group, a truncated Latin square arrangement of fatty acid (FA) treatments was used in 2 consecutive 35-d periods. The FA treatments supplemented at 1.5% of diet dry matter were (1) 80:10 (80% C16:0 + 10% cis-9 C18:1), (2) 73:17 (73% C16:0 + 17% cis-9 C18:1), (3) 66:24 (66% C16:0 + 24% cis-9 C18:1), and (4) 60:30 (60% C16:0 + 30% cis-9 C18:1). Treatment × production group interactions were observed for yields of milk, fat-corrected milk, energy-corrected milk, milk fat, milk protein, and milk lactose and energy partitioned to milk. Increasing cis-9 C18:1 in FA treatments reduced fat-corrected milk, energy-corrected milk, and milk energy output in low-producing cows but increased these in high-producing cows. Increasing cis-9 C18:1 in FA treatments did not affect milk yield, milk protein yield, and milk lactose yield in low- and medium-producing cows but increased these in high-producing cows. Regardless of production level, there was no effect of treatments on dry matter intake; however, increasing cis-9 C18:1 in FA treatments increased body weight change and body condition score change. Increasing cis-9 C18:1 in FA treatments increased total FA digestibility due to a linear increase in 16- and 18-carbon FA digestibilities. Interactions between FA treatments and production level were observed for the yield of milk fat and milk FA sources. In low-producing cows, increasing cis-9 C18:1 in FA treatments decreased milk fat yield due to a decrease in de novo and mixed milk FA without changes in preformed milk FA. In contrast, in high-producing cows, increasing cis-9 C18:1 in FA treatments increased milk fat yield due to an increase in de novo and preformed milk FA. Our results indicate that high-producing dairy cows (averaging 60 kg/d) responded better to a fat supplement containing more cis-9 C18:1, whereas low-producing cows (averaging 45 kg/d) responded better to a supplement containing more C16:0.  相似文献   

14.
The objective of our study was to evaluate the effects of timing of palmitic acid (C16:0) supplementation on production responses of early-lactation dairy cows. Fifty-two multiparous cows were used in a randomized complete block design experiment. During the fresh period (FR; 1–24 d in milk) cows were assigned to either a control diet containing no supplemental fat (CON) or a diet supplemented with C16:0 (palmitic acid, PA; 1.5% of diet dry matter). During the peak (PK) period (25–67 d in milk) cows were assigned to either a CON diet or a PA (1.5% of diet dry matter) diet in a 2 × 2 factorial arrangement of treatments considering the diet that they received during the FR period. During the FR period, we did not observe treatment differences for dry matter intake or milk yield. Compared with CON, PA increased the yield of 3.5% fat-corrected milk by 5.30 kg/d, yield of energy-corrected milk (ECM) by 4.70 kg/d, milk fat content by 0.41% units, milk fat yield by 280 g/d, and protein yield by 100 g/d. The increase in milk fat associated with the PA treatment during the FR period occurred due to an increase in yield of 16-carbon milk fatty acids (FA) by 147 g/d (derived from both de novo synthesis and extraction from plasma) and preformed milk FA by 96 g/d. Compared with CON, PA decreased body weight (BW) by 21 kg and body condition score (BCS) by 0.09 units and tended to increase BW loss by 0.76 kg/d. Although PA consistently increased milk fat yield and ECM over time, a treatment × time interaction was observed for BW and BCS due to PA inducing a greater decrease in BW and BCS after the second week of treatments. Feeding PA during the PK period increased milk yield by 3.45 kg/d, yield of 3.5% fat-corrected milk by 4.50 kg/d, yield of ECM by 4.60 kg/d, milk fat content by 0.22% units, milk fat yield by 210 g/d, protein yield by 140 g/d, and lactose yield by 100 g/d but tended to reduce BW by 10 kg compared with CON. Also, during the PK period we observed an interaction between diet fed in the FR and PK periods for milk fat yield due to feeding PA during the PK period increasing milk fat yield to a greater extent in cows that received the CON diet (+240 g/d) rather than the PA diet (+180 g/d) during the FR period. This difference was associated with the yield of preformed FA because feeding PA during the PK period increased the yield of preformed milk FA only in cows that received the CON diet during the FR period. In conclusion, feeding a C16:0 supplement to early-lactation cows consistently increased the yield of ECM in both the FR and PK periods compared with a control diet. For some variables, the effect of feeding C16:0 was affected by timing of supplementation because milk yield increased only during the PK period and BW decreased to a greater extent in the FR period. Regardless of diet fed in the FR period, feeding a C16:0 supplement during the PK period increased yields of milk and milk components.  相似文献   

15.
《Journal of dairy science》2021,104(12):12628-12646
Our objective was to perform a series of meta-analyses to evaluate the effects of diets supplemented with saturated free fatty acid (FA) supplements (SFAA) compared with nonfat supplemented control diets (CON) on nutrient digestibility and production responses of lactating dairy cows and to determine whether experimental design affects responses to SFFA. We divided SFFA into C16:0-enriched supplements (PALM, FA supplements with ≥80% C16:0) and C16:0+C18:0-enriched supplements (MIX, FA supplements with ≥80% C16:0+C18:0). The database was formed from 32 peer-reviewed publications with SFFA supplemented at ≤3% diet dry matter (DM). We completed 3 different meta-analyses to meet our objectives. We analyzed the interaction between experimental design (continuous vs. change-over) and treatments (CON vs. SFFA; Meta.1). Regardless of experimental design, we evaluated the effect of treatment (CON vs. PALM vs. MIX; Meta.2) and the effect of 1-percentage-unit increase of MIX and PALM in diet DM (Meta.3). In Meta.1, there was no interaction between treatments and experimental design for any variable. In Meta.2, compared with CON, MIX had no effect on NDF digestibility, milk protein yield and energy corrected milk (ECM), increased the yields of milk (1.20 kg/d) and milk fat (0.04 kg/d), and decreased FA digestibility (5.20 percentage units). Compared with CON, PALM increased NDF digestibility (4.50 percentage units), the yields of milk (1.60 kg/d), milk fat (0.10 kg/d), milk protein (0.04 kg/d), and ECM (2.00 kg/d), and had no effect on FA digestibility. Compared with MIX, PALM tended to increase FA digestibility (3.20 percentage units), increased NDF digestibility (3.50 percentage units), milk fat yield (0.06 kg/d), and ECM (1.20 kg/d). In Meta.3, for each 1-percentage-unit increase of supplemental FA in diet DM, MIX had no effect on NDF digestibility, decreased FA digestibility, increased the yields of milk and milk fat, had no effect on milk protein yield, ECM and milk fat content, and decreased milk protein content. For each 1-percentage-unit increase of supplemental FA in diet DM, PALM increased NDF digestibility, had no effect on FA digestibility, increased the yields of milk, milk fat, ECM and milk fat content, tended to increase milk protein yield, and had no effect on milk protein content. Our results indicate no reason for the restrictive use of change-over designs in saturated FA supplementation studies and meta-analyses. Lactating dairy cows responded better to a FA supplement enriched in C16:0 compared with one containing C16:0 and C18:0.  相似文献   

16.
《Journal of dairy science》2021,104(9):9956-9966
The objective of our study was to determine the effects of altering the ratio of stearic (C18:0; SA) and oleic (cis-9 C18:1; OA) acids in supplemental fatty acid (FA) blends on FA digestibility and milk yield of dairy cows. Eight multiparous Holstein cows (mean ± SD; 157 ± 11.8 d in milk) were randomly assigned to treatment sequence in a replicated 4 × 4 Latin square design with 14-d periods. Digestibility and production data were collected during the last 4 d of each period. The treatments were an unsupplemented control diet (CON), and 3 diets incorporating FA supplement blends at 1.4% of diet dry matter (DM) containing (as a % of total FA) 50% SA and 10% OA, 40% SA and 20% OA, or 30% SA and 30% OA. The FA blends were balanced to contain 33% palmitic, 5% linoleic, and <0.5% linolenic acids. The FA supplements replaced soyhulls in the CON diet. Preplanned contrasts were as follows: (1) overall effect of FA treatments [CON vs. the average of the FA-supplemented diets; (50:10 + 40:20 + 30:30)/3], (2) the linear effect of OA inclusion in the supplemental FA blend, and (3) the quadratic effect of OA inclusion in the supplemental FA blend. There was no effect of treatment on DM intake, but the replacement of soyhulls in the FA treatments decreased neutral detergent fiber intake. Overall, compared with CON, FA treatments increased DM and neutral detergent fiber digestibility, and increasing OA within FA treatments quadratically increased digestibility of DM and neutral detergent fiber. Overall, FA treatments increased the intake of total, 16-carbon, and 18-carbon FA, decreased the digestibility of total and 18-carbon FA, but increased absorption of total, 16-carbon, and 18-carbon FA. Within FA treatments, increasing OA linearly increased the digestibility of total, 16-carbon, and 18-carbon FA, as well as the absorption of total, 16-carbon, and 18-carbon FA. Overall, FA treatments increased the yields of milk, energy-corrected milk, and milk fat, and tended to increase milk protein yield. Compared with CON, FA treatments had no effect on the yield of de novo milk FA and increased the yields of mixed and preformed milk FA. Within FA treatments, increasing OA did not affect the yields of milk or milk components, linearly decreased the yield of de novo FA, and quadratically affected the yield of mixed and preformed milk FA. Overall, FA treatments increased plasma nonesterified fatty acids but did not affect β-hydroxybutyrate or insulin. Within FA treatments, increasing OA quadratically affected plasma nonesterified fatty acids, and tended to linearly increase β-hydroxybutyrate and quadratically affect insulin. In conclusion, supplemental FA blends containing different ratios of SA and OA did not affect DM intake but increased the yields of milk and milk components. Supplemental FA blends also increased digestibility of DM and neutral detergent fiber and decreased digestibility of total and 18-carbon FA compared with CON. Although increasing OA within FA supplements did not alter milk production, increasing OA within FA supplements increased total, 16-carbon, and 18-carbon FA digestibility and FA absorption. Further research is required to determine longer term effects of SA and OA on nutrient digestion and partitioning and opportunities for maintaining or improving FA digestibility with increasing SA intake and availability in the small intestine.  相似文献   

17.
18.
The objective of this study was to determine the effects of feeding an increased amount of extruded flaxseed with high proportions of n-3 fatty acids (FA) to transition dairy cows on performance, energy balance, and FA composition in plasma, adipose tissue, and milk fat. Multiparous Israeli-Holstein dry cows (n = 44) at 256 d of pregnancy were assigned to 2 treatments: (1) control cows were fed prepartum a dry-cow diet and postpartum a lactating-cow diet that consisted of 5.8% ether extracts; and (2) extruded flaxseed (EF) cows were supplemented prepartum with 1 kg of extruded flaxseed (7.9% dry matter)/cow per d, and postpartum were fed a diet containing 9.2% of the same supplement. The EF supplement was fed until 100 d in milk. On average, each pre- and postpartum EF cow consumed 160.9 and 376.2 g of C18:3n-3/d, respectively. Postpartum dry matter intake was 3.8% higher in the EF cows. Milk production was 6.4% higher and fat content was 0.4% U lower in the EF group than in the controls, with no differences in fat and protein yields. Energy balance in the EF cows was more positive than in the controls; however, no differences were observed in concentrations of nonesterified fatty acids and glucose in plasma. Compared with controls, EF cows had greater proportions of C18:3n-3 in plasma and adipose tissue. The proportion of n-3 FA in milk fat was 3.7-fold higher in the EF cows, and the n-6:n-3 ratio was decreased from 8.3 in controls to 2.3 in the EF cows. Within-group tests revealed that the C18:3n-3 content in milk fat in the EF cows was negatively correlated with milk fat percentage (r = –0.91) and yield (r = –0.89). However, no decrease in de novo synthesis of less than 16-carbon FA was found in the EF group, whereas C16:0 yields were markedly decreased. It appears that the enrichment of C18:3n-3 in milk fat was limited to approximately 2%, and the potential for increasing this n-3 FA in milk is higher for cows with lower milk fat contents. In conclusion, feeding increased amounts of C18:3n-3 during the transition period enhanced dry matter intake postpartum, increased milk production, decreased milk fat content, and improved energy balance. Increased amounts of EF considerably influenced the FA profile of plasma, adipose tissue, and milk fat. However, the extent of C18:3n-3 enrichment in milk fat was limited and was negatively correlated with milk fat content and yield.  相似文献   

19.
A variable response to fat supplementation has been reported in dairy cows, which may be due to cow production level, environmental conditions, or diet characteristics. In the present experiment, the effect of a high palmitic acid supplement was investigated relative to a conventional Ca salts of palm fatty acids (Ca-FA) supplement in 16 high-producing Holstein cows (46.6 ± 12.4 kg of milk/d) arranged in a crossover design with 14-d periods. The experiment was conducted in a non-heat-stress season with 29.5% neutral detergent fiber diets. Treatments were (1) high palmitic acid (PA) supplement fed as free FA [1.9% of dry matter (DM); 84.8% C16:0] and (2) Ca-FA supplement (2.3% of DM; 47.7% C16:0, 35.9% C18:1, and 8.4% C18:2). The PA supplement tended to increase DM intake, and increased the yields of milk and energy-corrected milk. Additionally, PA increased the yields of milk fat, protein, and lactose, whereas milk concentrations of these components were not affected. The yields of milk de novo and 16-C FA were increased by PA compared with Ca-FA (7 and 20%, respectively), whereas the yield of preformed FA was higher in Ca-FA. A reduction in milk fat concentration of de novo and 16-C FA and a marginal elevation in trans-10 C18:1 in Ca-FA is indicative of altered ruminal biohydrogenation and increased risk of milk fat depression. No effect of treatment on plasma insulin was observed. A treatment by time interaction was detected for plasma nonesterified fatty acids (NEFA), which tended to be higher in Ca-FA than in PA before feeding. Overall, the palmitic acid supplement improved production performance in high-producing cows while posing a lower risk for milk fat depression compared with a supplement higher in unsaturated FA.  相似文献   

20.
This article is the second from an experiment that determined the effects of altering the dietary ratio of palmitic (C16:0) and oleic (cis-9 C18:1) acids on digestibility, production, and metabolic responses of dairy cows during the immediate postpartum. This article elaborates on the effect of these diets on nutrient digestibility, energy balance, and metabolism. Fifty-six multiparous cows were used in a randomized complete block design and randomly assigned to 1 of 4 treatments fed from 1 to 24 d in milk. The treatments were: (1) control (CON) diet not supplemented with fatty acids (FA); (2) diet supplemented with a FA blend containing 80% C16:0 and 10% cis-9 C18:1 (80:10); (3) diet supplemented with a FA blend containing 70% C16:0 and 20% cis-9 C18:1 (70:20); and (4) diet supplemented with a FA blend containing 60% C16:0 and 30% cis-9 C18:1 (60:30). The FA supplement blends were added at 1.5% of diet dry matter by replacing soyhulls in the CON diet. Three preplanned contrasts were used to compare treatment differences: (1) CON versus FA-supplemented diets, (80:10 + 70:20 + 60:30)/3; (2) the linear effect of cis-9 C18:1 inclusion in diets; and (3) the quadratic effect of cis-9 C18:1 inclusion in diets. The FA-supplemented diets increased digestibility of dry matter, neutral detergent fiber, 18-carbon FA, and total FA compared with CON. We observed a tendency for an interaction between treatment and time for the digestibility of 18-carbon and total FA because the difference in digestibility between CON and 60:30 treatments tended to increase over time. Increasing dietary cis-9 C18:1 increased linearly the digestibility of dry matter, neutral detergent fiber, 16-carbon, 18-carbon, and total FA. Interestingly, total absorbed FA was positively related to milk, milk fat yield, energy-corrected milk, plasma insulin, and albumin, and negatively related to plasma nonesterified FA (NEFA) and body weight loss. The FA-supplemented diets increased intake of digestible energy, metabolizable energy, and net energy for lactation compared with CON. Compared with CON, FA-supplemented diets increased milk energy output and tended to increase negative energy balance. Increasing dietary cis-9 C18:1 increased intake of digestible energy, metabolizable energy, and net energy for lactation. Although increasing dietary cis-9 C18:1 did not affect milk energy output and energy for maintenance, increasing dietary cis-9 C18:1 improved energy balance. Compared with CON, FA-supplemented diets increased plasma insulin, but we did not observe differences between CON and FA-supplemented diets for NEFA and albumin. Increasing cis-9 C18:1 in FA treatments linearly decreased plasma NEFA and tended to linearly increase insulin and β-hydroxybutyrate. During the carryover period, no treatment differences in blood metabolites were observed. Our results indicate that feeding FA supplements containing C16:0 and cis-9 C18:1 during the immediate postpartum period increased nutrient digestibility, energy intake, and milk energy output compared with a non-fat-supplemented control diet. Increasing dietary cis-9 C18:1 increased energy intake, reduced markers of body fat mobilization, and improved energy balance during the immediate postpartum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号