首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastomeric components have wide usage in many industries. The typical service loading for most of these components is variable amplitude and multiaxial. In this study a general methodology for life prediction of elastomeric components under these typical loading conditions was developed and illustrated for a passenger vehicle cradle mount. Crack initiation life prediction was performed using different damage criteria. The methodology was validated with component testing under different loading conditions including constant and variable amplitude in-phase and out-of-phase axial–torsion experiments. The optimum method for crack initiation life prediction for complex multiaxial variable amplitude loading was found to be a critical plane approach based on maximum normal strain plane and damage quantification by cracking energy density on that plane. Rainflow cycle counting method and Miner’s linear damage rule were used for predicting fatigue life under variable amplitude loadings. The fracture mechanics approach was used for total fatigue life prediction of the component based on specimen crack growth data and FE simulation results. Total fatigue life prediction results showed good agreement with experiments for all of the loading conditions considered.  相似文献   

2.
A fatigue crack growth model under constant amplitude loading has been developed considering energy balance during growth of the crack. The plastic energy dissipated during growth of a crack within cyclic plastic zone and area below cyclic stress–strain curve was used in the energy balance. The near crack tip elastic–plastic stress and strain were calculated on the basis of Hutchinson, Rice and Rosengren (HRR) formulations. Fatigue crack growth rate in linear and near threshold region of da/dN versus ΔK curve can be determined on the basis of the proposed model in terms of low cycle fatigue (LCF) properties determined on smooth specimen. The predictions of the model have been compared with the experimental and theoretical results available in the literature using mechanical and fatigue properties. The model compares well in the threshold and intermediate region of the da/dN versus ΔK curve for wide range of material tested.  相似文献   

3.
Service conditions experienced by rubber components often involve cyclic loads which are more complex than a constant amplitude loading history. Consequently, a model is needed for relating the results of constant amplitude characterization of fatigue behaviour to the effects of variable amplitude loading signals. The issue is explored here via fatigue crack growth experiments on pure shear specimens conducted in order to evaluate the applicability of a linear crack growth model equivalent to Miner's linear damage rule. This model equates the crack growth rate for a variable amplitude signal to the sum of the constant amplitude crack growth rates associated with each individual cycle. The variable amplitude signals were selected to show the effects of R-ratio (ratio of minimum to maximum energy release rate), load level, load sequence, and dwell periods on crack growth rates. In order to distinguish the effects of strain crystallization on crack growth behaviour, two filled rubber compounds were included: one that strain crystallizes, natural rubber, and one that does not, styrene-butadiene rubber. The linear crack growth model was found to be applicable in most cases, but a dwell effect was observed that is not accounted for by the model.  相似文献   

4.
The propagation of fatigue cracks in specimens subjected to variable amplitude loading under plane strain conditions was investigated experimentally and numerically, to find the influence of the variable amplitude loading on the stabilised crack closure level. Experiments on four-point-bend specimens with a Gurney block load scheme, showed that the crack closure level depends on the crack length but not on the stress range of the fluctuations. Numerical simulations performed in the fatigue crack growth program FASTRAN-II showed good agreement with the experimental results. In addition, statistical uncertainty analyses performed on the fatigue life show that, for technical applications, the uncertainties in initial crack length and load levels have a greater influence on the uncertainty in fatigue life, than the fluctuation level of the load.  相似文献   

5.
The kinetics of short crack growth has been studied in austenitic‐ferritic 2205 duplex stainless steel. Smooth cylindrical specimens and specimens with shallow notch were subjected to constant plastic strain amplitude loading. The crack growth was studied in notched specimens. The notch area has been mechanically and electrolytically polished to facilitate the observation of crack initiation and growth. The initiated cracks were observed in an SEM (scanning electron microscope). The crack growth was studied using long distance QUESTAR optical microscope equipped with high‐resolution camera. In constant plastic strain amplitude loading the microcracks were initiated and their growth kinetics has been studied. The characteristic features of the crack growth at different plastic strain amplitudes were recorded. Two approaches to analyse the crack growth rates were adopted. The comparison of the prediction of the fatigue life using the plastic‐strain‐dependent crack growth rate was compared with Manson–Coffin law and the relation between parameters of this law and parameters of the short crack growth law were established.  相似文献   

6.
Abstract— The fatigue strength of notched specimens of a rotor steel was examined under variable torsional loading which simulates turbine-generator oscillations resulting from the high speed reclosing of transmission-line circuit breakers. The local stress-strain response at a notch root was analysed using Neuber's rule and the resulting complex strain sequences applied to smooth specimens. Using the rain flow analysis and the linear summation rule, fatigue lives of the smooth specimens were successfully predicted from constant amplitude fatigue life data in association with the cyclic stress-strain curve obtained by the incremental step method. Experimental crack initiation lives for notched specimens subjected to variable torsional loading were in excellent agreement with the theoretical curves derived from results on smooth specimens. According to the view that fatigue damage is equated to crack length, the propagation life of a mode II crack along the notch root was predicted to be actually coincident with the life to crack initiation at the notch root denned in this study, i.e. the life at the stage of finding a continuous circumferential crack.  相似文献   

7.
In modern electronic packaging, especially surface mount technology (SMT), thermal strain is usually induced between components during processing, and in service, by a mismatch in the thermal expansion coefficients. Since solder has a low melting temperature and is softer than other components in electronic packaging, most of the cyclic stresses and strains take place in the solder. Fatigue crack initiation and fatigue crack propagation are likely to occur in the solder even when the cyclic stress is below the yield stress. It is an objective of this research to study the behaviour of fatigue crack initiation and propagation in both lead‐containing solder (63Sn‐37Pb), and lead‐free solders (Sn‐3.5Ag). The effect of alloying (Cu and Bi addition), frequency, tensile hold time and temperature on low cycle fatigue (LCF) behaviour of the solders is discussed. Mechanisms of LCF crack initiation and propagation are proposed and LCF life prediction, based on the various models, is carried out.  相似文献   

8.
Fatigue crack growth in structure components, which is subjected to variable amplitude loading, is a very complex subject. Studying of fatigue crack growth rate and fatigue life calculation under spectrum loading is vital in life prediction of engineering structures at higher reliability. The main aim of this paper is to address how to characterize the load sequence effects in fatigue crack propagation under variable amplitude loading. Thus, a fatigue life under various load spectra, which was predicted, based on the Austen, Forman and NASGRO models. The findings were then compared to the similar results using FASTRAN and AFGROW codes. These models are validated with the literature-based fatigue crack growth test data in 2024-T3 Aluminium alloys under various overload, underload, and spectrum loadings. With the consideration of the load cycle interactions, finally, the results show a good agreement in the behaviour with small differences in fatigue life compare to the test data.  相似文献   

9.
The generalization of damage tolerance to variable amplitude fatigue is of prime importance in order to maintain the reliability of structures and mechanical components subjected to severe loading conditions. Engineering spectra usually contain overloads and underloads which distribution may not be random. However for predicting the life of a structure, a simplified spectrum is usually determined from the real one, in order to reduce testing periods on prototypes. Therefore it is thus important to know which cycles can contribute to crack growth and which can be neglected. This paper presents an analysis of fatigue crack growth on M (T) specimens made of a medium carbon steel DIN Ck45. The specimens are subjected to repeated blocks of cycles made up of one or several (1, 2, 6 or 10) overloads (or underloads) separated by a variable number (10, 1000 or 10 000) of baseline cycles. The main objective of this study is to better understand the mechanisms at the origin of interactions effects due to the presence of overloads (or underloads) at different locations of each block loading. Under constant amplitude loading, single variables ΔK and Kmax are required in crack growth relationships. The transferability of fatigue laws, obtained under constant amplitude loading to variable amplitude fatigue, requires at least an additional variable, whose evolution with crack length accounts for the interactions effects between cycles of different types. Results have shown that the interaction effects in fatigue crack growth are closely related to the mechanisms of crack growth: cyclic plastic behaviour of the material and fracture surface roughness. Measurements of roughness of the surface fracture were carried out in both constant amplitude and variable amplitude tests. The roughness characterization helped to determine the importance of the mechanisms on variable amplitude fatigue crack growth and determine the influence of overloads/underloads on fatigue crack growth.  相似文献   

10.
Railway axles are safety relevant components which are usually designed for up to 30 years of service. Besides the experience based definition of inspection intervals, the application of fracture mechanics tools is currently being introduced as an appropriate method. Basic fatigue crack growth data both in the range of stable crack propagation and near the threshold have been experimentally determined for the heat-treated railway axle steels 25CrMo4 (EA4T) and 34CrNiMo6+QT under constant and variable amplitude loading at relevant stress ratios (predominantly fully reversed load cycles, R = −1). For the computational modelling of fatigue crack propagation, a generally applicable stress intensity factor solution has been derived by finite-element analyses. The results are employed for predicting fatigue crack growth in a reference railway axle within the shaft and in the fillet zone near a press fit. Additionally, the influence of press fitting on the crack propagation behaviour in a fillet is discussed. Finally, fatigue crack growth curves experimentally determined on 1:3 and 1:1 scaled axles at constant and variable amplitude loading are compared to the test results for standard M(T) specimens, as well as to respective analytical predictions.  相似文献   

11.
ABSTRACT Fatigue crack growth of fibre reinforced metal laminates (FRMLs) under constant and variable amplitude loading was studied through analysis and experiments. The distribution of the bridging stress along the crackline in centre‐cracked tension (CCT) specimen of FRMLs was modelled numerically, and the main factors affecting the bridging stress were identified. A test method for determining the delamination growth rates in a modified double cracked lap shear (DCLS) specimen was presented. Two models, one being fatigue‐mechanism‐based and the other phenomenological, were developed for predicting the fatigue life under constant amplitude loading. The fatigue behaviour, including crack growth and delamination growth, of glass fibre reinforced aluminium laminates (GLARE) under constant amplitude loading following a single overload was investigated experimentally, and the mechanisms for the effect of a single overload on the crack growth rates and the delamination growth rates were identified. An equivalent closure model for predicting crack‐growth in FRMLs under variable amplitude loading and spectrum loading was presented. All the models presented in this paper were verified by applying to GLARE under constant amplitude loading and Mini‐transport aircraft wing structures (TWIST) load sequence. The predicted crack growth rates are in good agreement with test results.  相似文献   

12.
A bimodal concept for the prediction of the high-cycle fatigue life of structural details subjected to constant- or variable-amplitude loading is considered in this paper. The total fatigue life was separated into two phases: crack initiation and crack propagation. The portion of life spent in crack initiation was estimated by using S–N data obtained on smooth specimens. A fracture mechanics concept was used to calculate the portion of life spent in crack propagation, and the S–N curve, including the fatigue limit of a structural detail, was determined by using material properties and the geometry of the detail. The bimodal concept was applied to a welded stiffener and the results are compared with experimental data reported in the literature.  相似文献   

13.
To understand the different aspects of fatigue behaviour of complex structural joints it will be much helpful if the effects of different parameters are studied separately. In this article, to study the isolated effect of interference fit on fatigue life a pined hole specimen is investigated. This specimen is a single‐holed plate with an oversized pin which force fitted to the hole. The investigation was carried out both experimentally and numerically. In the experimental part, interference fitted specimens along with open hole specimens were fatigue tested to study the experimental effect of the interference fit. In the numerical part, three‐dimensional finite element (FE) simulations have been performed in order to obtain the created stresses due to interference fit and subsequent applied longitudinal load at the holed plate. The stress distribution obtained from FE simulation around the hole was used to predict crack initiation life using Smith–Watson–Topper method and fatigue crack growth life using the NASGRO equation with applying the AFGROW computer code. The predicted fatigue life obtained from the numerical methods show a good agreement with the experimental fatigue life.  相似文献   

14.
Crack growth rate versus crack length curves of heavily overloaded parent material specimens and fatigue crack propagation curves of friction‐stir‐welded aluminium samples are presented. It is shown that in both cases the residual stresses have a strong effect on the crack propagation behaviour under constant and variable amplitude loading. As a simplified engineering approach, it is assumed in this paper, that in both cases residual stresses are the main and only factor influencing crack growth. Therefore fatigue crack propagation predictions are performed by adding the residual stresses to the applied loading and by neglecting the possible effects of overloading and friction stir welding on the parent material properties. For a quantitative assessment of the residual stress effects, the stress intensity factor due to residual stresses Kres is determined directly with the so‐called cut‐compliance method (incremental slitting). These measurements are particularly suited as input parameters for the software packages AFGROW and NASGRO 3.0, which are widely used for fatigue crack growth predictions under constant and variable amplitude loading. The prediction made in terms of crack propagation rates versus crack length and crack length versus cycles generally shows a good agreement with the measured values.  相似文献   

15.
Deformation and failure behaviour of FeE460 and AlMg4.5Mn under multiaxial proportional loading with constant and variable amplitudes To calculate the fatigue life-to-crack initiation of engineering components under combined cyclic loading, experimentally secured knowledge on the cyclic deformation and failure behaviour of the materials used under the certain multiaxial cyclic stress and strain conditions are required. To obtain this, strain-controlled fully reversed experimental tests at tensional, torsional and combined loading with constant and variable amplitudes have been conducted using thin-walled tube specimens of FeE460 and AlMg4.5Mn. Experimental tests on standard uniaxially loaded hourglass specimens have also been conducted to study specimen form effects. Cyclic deformation behaviour can be uniformly described by the stabilised cyclic σ-ε-curve, if stresses and strains are expressed as equivalent values according to the von Mises criterion. Failure behaviour at constant and variable amplitude loading is characterized by the initiation and growth of short cracks at right angle to the direction of the greatest principal stress (mode I) in the case of tensional or combined loading and by short crack growing in both shear stress directions (mode II+III) in the case of torsional loading. At fully reversed constant amplitude loading, all three types of load can be described by one constant amplitude strain life-to-crack initiation curve. At variable amplitude loading (notch strain simulation with gaussian spectrum, H0=105), the experimental fatigue life-to-crack initiation values are lower than estimated values based on Miner-calculations using an equivalent stress-strain supported PSWT-N-curve. The question of mean stresses and their evaluation is discussed.  相似文献   

16.
A generalised step-by-step procedure for fatigue crack growth analysis of structural components subjected to variable amplitude loading spectra has been presented. The method has been illustrated by analysing fatigue growth of planar corner crack in an attachment lug made of Al7050-T7451 alloy.Stress intensity factors required for the fatigue crack growth analysis were calculated using the weight function method. In addition, so-called “load-shedding” effect was accounted for in order to determine appropriate magnitudes of the applied stress intensity factors. The rate of the load shedding was determined with the help of the finite element (FE) method by finding the amount of the load transferred through the cracked ligament. The UniGrow fatigue crack growth model, based on the material stress–strain behaviour near the crack tip, has been used to simulate the fatigue crack growth under two variable amplitude loading spectra. The comparison between theoretical predictions and experimental data proved the ability of the UniGrow model to correctly predict fatigue crack growth behaviour of two-dimensional planar cracks under complex stress field and subjected to arbitrary variable amplitude loading.  相似文献   

17.
FATIGUE DAMAGE IN 1045 STEEL UNDER VARIABLE AMPLITUDE BIAXIAL LOADING   总被引:1,自引:0,他引:1  
Abstract— During constant amplitude loading, two different types of crack systems have been reported In the high cycle fatigue (HCF) region, cracks nucleate on a small number of maxium shear strain amplitude planes One of these cracks becomes a dominant crack and leads to failure of the specimen In the low cycle fatigue (LCF) region, equally developed microcracks are observed over the entire gage section and grow during the majority of the life. The failure is due to a linking in which the microcracks join up during the last few cycles of the fatigue life.
To investigate the interaction of these two types of crack systems in biaxial fatigue, experiments were performed on thin-wall tubular specimens in tension, torsion and combined tension-torsion loading The test program included step loading and block loading in which two equivalent strain amplitudes were employed. One of the equivalent strain amplitudes is in the HCF region and the other was in the LCF region
Fatigue lives were predicted from constant amplitude damage curves when a single crack system dominated the fatigue process Two competitive crack systems were sometimes developed on the maximum shear strain amplitude planes in a single specimen under block loading This resulted in a conservative prediction of the fatigue life.  相似文献   

18.
Plastic strain-controlled short crack growth and fatigue life   总被引:2,自引:0,他引:2  
Constant plastic strain-controlled and constant stress-controlled tests were performed on smooth and lightly notched specimens machined from a massive forging of 42CrMo4 steel. Comparison of the fatigue life curves plotted as function of the plastic strain amplitude and stress amplitude shows a decisive role of plastic strain amplitude. Crack initiation and the kinetics of short crack growth were studied in constant plastic strain amplitude loading and the relation between the crack growth coefficient and plastic strain amplitude was established. This is equivalent to the Coffin–Manson law and shows that the Coffin–Manson law can be interpreted in terms of short crack growth.  相似文献   

19.
Fatigue crack growth rates have been experimentally determined for the superalloy GH2036 (in Chinese series) at an elevated temperature of 550 °C under pure low cycle fatigue (LCF) and combined high and low cycle fatigue (CCF) loading conditions by establishing a CCF test rig and using corner-notched specimens. These studies reveal decelerated crack growth rates under CCF loading compared to pure LCF loading, and crack propagation accelerates as the dwell time prolongs. Then the mechanism of fatigue crack growth at different loadings has been discussed by using scanning electron microscope (SEM) analyses of the fracture surface.  相似文献   

20.
In the present study, the effect of welding process and procedure on fatigue crack initiation from notches and fatigue crack propagation in AISI 304L stainless steel welds was experimentally investigated. Full penetration, double-vee butt welds have been fabricated and CCT type specimens were used. Lawrence's local-stress approach (a two-stage model) is used to predict the fatigue life. The notch-root stress method was applied to calculate the fatigue crack initiation life, while the fatigue crack propagation life was estimated using fracture mechanics concepts. The fatigue notch factor is calculated using Lawrence's approach. Constant amplitude fatigue tests with stress ratio, R=0 were carried out using 100 kN servo-hydraulic DARTEC universal testing machine with a frequency of 30 Hz. The predicted lives were compared with the experimental values. A good agreement has been reached. It is found that the weld procedure has a stronger effect on lives to initiation than on propagation lives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号