首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Abstract— Light‐emitting transistors having a metal‐base organic transistor (MBOT) structure demonstrate both the function of an organic thin‐film transistor (OTFT) and organic light‐emitting diode (OLED). The MBOT is a vertical‐type organic transistor having a simple structure composed of organic/metal/organic layers demonstrating high‐current and low‐voltage operation. The light‐emitting MBOT was fabricated simply by inserting additional layers of hole‐transporting and emissive materials used in the OLED into the col lector layer. The device showed perfect surface emission similar to an OLED. A luminance modulation of 370 cd/m2 was observed at a collector voltage of 20 V and a base voltage of 3 V. This device can be applied to an OLED display device to increase the numerical aperture or reduce the required current of the TFT backplane.  相似文献   

2.
Abstract— An active‐matrix organic light‐emitting diode (AMOLED) display driven by hydrogenated amorphous‐silicon thin‐film transistors (a‐Si:H TFTs) on flexible, stainless‐steel foil was demonstrated. The 2‐TFT voltage‐programmed pixel circuits were fabricated using a standard a‐Si:H process at maximum temperature of 280°C in a bottom‐gate staggered source‐drain geometry. The 70‐ppi monochrome display consists of (48 × 4) × 48 subpixels of 92 ×369 μm each, with an aperture ratio of 48%. The a‐Si:H TFT pixel circuits drive top‐emitting green electrophosphorescent OLEDs to a peak luminance of 2000 cd/m2.  相似文献   

3.
Abstract— High‐efficiency and simple‐structured red‐emitting phosphorescent devices based on the hole‐injection layer of 4,4′,4″‐tris(2‐naphthylphenyl‐phenylamino)‐triphenylamine [2‐TNATA] and the emissive layer of bis(10‐hydroxybenzo[h] quinolinato)beryllium complex [Bebq2] doped with SFC‐411 (proprietary red phosphorescent dye) have been researched. The fabricated devices are divided into three types depending on whether or not the hole‐transport layer of N,N′‐bis(1 ‐naphthyl)‐N, N'‐diphenyl‐1,1′‐biphenyl‐4,4′‐diamine [NPB] or the electron‐transport layer of SFC‐137 (proprietary electron transporting material) is included. Among the experimental devices, the best electroluminescent characteristics were obtained for the device with an emission structure of 2‐TNATA/Bebq2:SFC‐411/SFC‐137. In this device, current density and luminance were found to be 200 mA/cm2 and 15,000 cd/m2 at an applied voltage of 7 V, respectively. Current efficiencies were 15 and 11.6 cd/A under a luminance of 500 and 5000 cd/m2. The peak wavelength in the electroluminescent spectral distribution and color coordinates on the Commission Internationale de I'Eclairage (CIE) chart were 628 nm and (0.67, 0.33), respectively.  相似文献   

4.
Abstract— High‐performance solution‐processed oxide‐semiconductor (OS) thin‐film transistors (TFTs) and their application to a TFT backplane for active‐matrix organic light‐emitting‐diode (AMOLED) displays are reported. For this work, bottom‐gated TFTs having spin‐coated amorphous In‐Zn‐O (IZO) active layers formed at 450°C have been fabricated. A mobility (μ) as high as 5.0 cm2/V‐sec, ?0.5 V of threshold voltage (VT), 0.7 V/dec of subthreshold swing (SS), and 6.9 × 108 of on‐off current ratio were obtained by using an etch‐stopper (ES) structure TFT. TFTs exhibited uniform characteristics within 150 × 150‐mm2 substrates. Based on these results, a 2.2‐in. AMOLED display driven by spin‐coated IZO TFTs have also been fabricated. In order to investigate operation instability, a negative‐bias‐temperature‐stress (NBTS) test was carried out at 60°C in ambient air. The IZO‐TFT showed ?2.5 V of threshold‐voltage shift (ΔVT) after 10,800 sec of stress time, comparable with the level (ΔVT = ?1.96 V) of conventional vacuum‐deposited a‐Si TFTs. Also, other issues regarding solution‐processed OS technology, including the instability, lowering process temperature, and printable devices are discussed.  相似文献   

5.
Abstract— The development of a high‐brightness low‐voltage yellow‐light‐emitting polymer system suitable for use in low‐cost passive‐matrix displays will be reported. Average device efficiencies of 16 lm/W at 100 and 1000 cd/m2 are achieved at 2.1 and 2.4 V, respectively. A luminance level of 100,000 cd/m2 is achieved at 5.5 V.  相似文献   

6.
Abstract— Amorphous‐oxide thin‐film‐transistor (TFT) arrays have been developed as TFT backplanes for large‐sized active‐matrix organic light‐emitting‐diode (AMOLED) displays. An amorphous‐IGZO (indium gallium zinc oxide) bottom‐gate TFT with an etch‐stop layer (ESL) delivered excel lent electrical performance with a field‐effect mobility of 21 cm2/V‐sec, an on/off ratio of >108, and a subthreshold slope (SS) of 0.29 V/dec. Also, a new pixel circuit for AMOLED displays based on amorphous‐oxide semiconductor TFTs is proposed. The circuit consists of four switching TFTs and one driving TFT. The circuit simulation results showed that the new pixel circuit has better performance than conventional threshold‐voltage (VTH) compensation pixel circuits, especially in the negative state. A full‐color 19‐in. AMOLED display with the new pixel circuit was fabricated, and the pixel circuit operation was verified in a 19‐in. AMOLED display. The AMOLED display with a‐IGZO TFT array is promising for large‐sized TV because a‐IGZO TFTs can provide a large‐sized backplane with excellent uniformity and device reliability.  相似文献   

7.
Abstract— Solution‐processed double‐layered ionic p‐i‐n organic light‐emitting diodes (OLEDs), comprised of an emitting material layer doped with an organometallic green phosphor and a photo‐cross‐linked hole‐transporting layer doped with photo‐initiator is reported. The fabricated OLEDs were annealed using simultaneous thermal and electrical treatments to form a double‐layered ionic p‐i‐n structure. As a result, an annealed double‐layered OLED with a peak brightness over 20,000 cd/m2 (20 V, 390 mA/cm2) and a peak efficiency of 15 cd/A (6 V, 210 cd/m2) was achieved.  相似文献   

8.
Abstract— Low‐temperature‐polysilicon thin‐film transistors (LTPS TFTs) were fabricated on polymer substrates using sputtered amorphous‐Si (a‐Si) films and excimer‐laser crystallization. The in‐film argon concentration of a‐Si films was minimized as low as 1.6% by using an argon/helium gas mixture as the sputtering gas. By employing XeCl excimer‐laser crystallization, poly‐Si films were successfully fabricated on polymer substrates with an average grain size of 400 nm. With a four‐mask process, a poly‐Si TFT was fabricated with a fully self‐aligned top‐gate structure, and the pMOS TFT device showed a field‐effect mobility of 63.6 cm2/V‐sec, ON/OFF ratio of 105, and threshold voltage of ?1.5 V.  相似文献   

9.
Abstract— A full‐color 12.1‐in.WXGA active‐matrix organic‐light‐emitting‐diode (AMOLED) display was, for the first time, demonstrated using indium‐gallium‐zinc oxide (IGZO) thin‐film transistors (TFTs) as an active‐matrix backplane. It was found that the fabricated AMOLED display did not suffer from the well‐known pixel non‐uniformity in luminance, even though the simple structure consisting of two transistors and one capacitor was adopted as the unit pixel circuit, which was attributed to the amorphous nature of IGZO semiconductors. The n‐channel a‐IGZO TFTs exhibited a field‐effect mobility of 17 cm2/V‐sec, threshold voltage of 1.1 V, on/off ratio >109, and subthreshold gate swing of 0.28 V/dec. The AMOLED display with a‐IGZO TFT array is promising for large‐sized applications such as notebook PCs and HDTVs because the a‐IGZO semiconductor can be deposited on large glass substrates (larger than Gen 7) using the conventional sputtering system.  相似文献   

10.
Abstract— Several white‐OLED structures with a high color‐rendering index (CRI) were investigated for lighting applications. A two‐unit fluorescent/phosphorescent hybrid white OLED achieved an excellent CRI of 95, high luminous efficacy of 37 lm/W, and long lifetime of over 40,000 hours at 1000 cd/m2. White‐OLED lighting panels of 8 × 8 cm for high‐luminance operation were fabricated, and a stable emission at 3000 cd/m2 was confirmed. Quite a small variation in chromaticity in a different directions was achieved by using an optimized optical device structure. With a light‐outcoupling substrate, a higher efficacy of 56 lm/W, high CRI of 91, and longer half‐decay lifetime of over 150,000 hours at 1000 cd/m2 was achieved. All‐phosphorescent white OLEDs placed on the light‐outcoupling substrate show a high CRI of 85 and higher efficacy of 65 lm/W with a fairly good half‐decay lifetime of over 30,000 hours. With a further voltage reduction and a high‐index spherical extractor, 128 lm/W at 1000 cd/m2 has been achieved.  相似文献   

11.
Abstract— A new approach to full‐color printable phosphorescent organic light‐emitting devices (P2OLEDs) is reported. Unlike conventional solution‐processed OLEDs that contain conjugated polymers in the emissive layer, the P2OLED's emissive layer consists of small‐molecule materials. A red P2OLED that exhibits a luminous efficiency of 11.6 cd/A and a projected lifetime of 100,000 hours from an initial luminance of 500 cd/m2, a green P2OLED with a luminous efficiency of 34 cd/A and a projected lifetime of 63,000 hours from an initial luminance of 1000 cd/m2, a light‐blue P2OLED with a luminous efficiency of 19 cd/A and a projected lifetime 6000 hours from an initial luminance of 500 cd/m2, and a blue P2OLED with a luminous efficiency of 6.2 cd/A and a projected lifetime of 1000 hours from an initial luminance of 500 cd/m2 is presented.  相似文献   

12.
Low‐temperature polycrystalline‐silicon (poly‐Si) thin‐film‐transistor (TFT) processes, based on PECVD amorphous‐silicon (a‐Si:H) precursor films and excimer‐laser crystallization, have been developed for application in the fabrication of active‐matrix liquid‐crystal‐displays (AMLCDs). The optimum process for depositing the precursor films has been identified. The relationship between excimer‐laser crystallization and poly‐Si film morphology has also been studied. Using these techniques, poly‐Si TFTs with a mobility of 275 cm2/V‐sec and on/off ratios of 1 × 107 have been fabricated.  相似文献   

13.
We have developed an 18‐in. 287 × 359‐mm flat fluorescent lamp (FFL) that uses a xenon dielectric barrier discharge and analyzed its electro‐optical characteristics. The surface luminance of the lamp having a diffuser sheet thickness of 3 mm was 5600 cd/m2 and the luminance uniformity was 92% at an applied voltage of 950 Vrms. The luminous efficacy of the FFL was 24.5 lm/W for a luminance of 4200 cd/m2 when driven by a sine‐wave voltage.  相似文献   

14.
Abstract— A novel method for the fabrication of ink‐jet‐printed organic light‐emitting‐diode devices is discussed. Unlike previously reported solution‐processed OLED devices, the emissive layer of OLED devices reported here does not contain polymeric materials. The emission of the ink‐jet‐printed P2OLED (IJ‐P2OLED) device is demonstrated for the first time. It shows good color and uniform emission although it uses small‐molecule solution. Ink‐jet‐printed green P2OLED devices possess a high luminous efficiency of 22 cd/A at 2000 cd/m2 and is based on phosphorescent emission. The latest solution‐processed phosphorescent OLED performance by spin‐coating is disclosed. The red P2OLED exhibits a projected LT50 of >53,000 hours with a luminous efficiency of 9 cd/A at 500 cd/m2. The green P2OLED shows a projected LT50 of >52,000 hours with a luminous efficiency of 35 cd/A at 1000 cd/m2. Also discussed is a newly developed sky‐blue P2OLED with a projected LT50 of >3000 hour and a luminous efficiency of 18 cd/A at 500 cd/m2.  相似文献   

15.
To improve PDP performance, we developed an AC‐PDP with the Delta Tri‐Color Arrangement (DelTA) cell structure and arc‐shaped electrodes. The experimental panel has a pixel pitch of 1.08 mm and luminous efficacy of 3 lm/W at a luminance of 200 cd/m2 despite its conventional gas mixture of Ne and Xe (4%) and conventional phosphor set. Moreover, its peak luminance can be greater than 1000 cd/m2. The strong dependence of luminous efficacy on the sustain voltage is also discussed in this paper.  相似文献   

16.
Abstract— A high‐performance inorganic electroluminescence (EL) device has been successfully developed by using an EL structure with a thick dielectric layer (TDEL) and sputtered BaAl2S4:Eu blue phosphor. The luminance and efficacy were higher than 2300 cd/m2 and 2.5 lm/W at L60, 120 Hz, respectively. Furthermore, the luminance at L60, 1.2 kHz was more than 23,000 cd/m2. The phosphor layer has a single‐phase and a highly oriented crystalline structure. The phosphor also shows high stability in air. A 34‐in. high‐definition television (HDTV) has been developed by combining a TDEL structure and color‐conversion materials. The panels with an optimized color filter demonstrated a peak luminance of 350 cd/m2, a color gamut of more than 100% NTSC, and a wide viewing angle similar to that of plasma‐display panels. The high reproducibility of the 34‐in. panels using our pilot line has been confirmed.  相似文献   

17.
The performance of two 4‐in. color PDP test panels with a default and a high‐Xe‐concentration gas mixture will be discussed. The default panel with a gas mixture of 3.5% Xe in Ne and a filling pressure of 665 hPa was compared with a panel containing a gas mixture of 13.5% Xe in Ne and a filling pressure of 800 hPa. The panels contain a green phosphor, YBO3:Tb, which showed less saturation at high UV load compared with a Willemite phosphor. The panel performance was compared in addressed conditions. For the default panel, a white luminance of 710 cd/m2 and an efficacy of 1.6 lm/W was found, while for the high‐Xe‐partial‐pressure panel, a white luminance of 2010 cd/m2 and an efficacy of 3.8 lm/W was realized. The increase of the driving voltages, about 20–30 V, is moderate. Finally, color saturation is improved at high Xe partial pressure.  相似文献   

18.
Abstract— The trade‐off between PDP efficacy improvement and driving voltages was investigated for several design factors. It was found that for a proper combination of an increased Xe content, cell design, and the use of a TiO2 layer combined with “non‐saturating” phosphors, a large increase in both efficacy and luminance can be realized at moderately increased drive voltages. In a 4‐in. color test panel, a white efficacy of 5 lm/W and a luminance of 5000 cd/m2 was obtained for sustaining at 260 V in addressed condition.  相似文献   

19.
Abstract— Highly efficient tandem white OLEDs based on fluorescent materials were developed for display and solid‐state‐lighting (SSL) applications. In both cases, the white OLED must have high power efficiency and long lifetime, but there are a number of attributes unique to each application that also must be considered. Tandem OLED technology has been demonstrated as an effective approach to increase luminance, extend OLED lifetime, and allow for use of different emitters in the individual stacks for tuning the emission spectrum to achieve desired performance. Here, examples of bottom‐emission tandem white OLEDs based on small‐molecule fluorescent emitters designed for displays and for SSL applications are reported. A two‐stack tandem white OLED designed for display applications achieved 36.5‐cd/A luminance efficiency, 8500K color temperature, and lifetime estimated to exceed 50,000 hours at 1000 cd/m2. This performance is expected to meet the specifications for large AMOLED displays. A two‐stack tandem white OLED designed for SSL applications achieved 20‐lm/W power efficiency, 38‐cd/A luminance efficiency, 3500K color temperature, and lifetime estimated to exceed 140,000 hours at 1000 cd/m2. With the use of proven light‐extraction techniques, it is estimated that this tandem device will exceed 40 lm/W with more than 500,000‐hour lifetime, performance that should be sufficient for first‐generation lighting products.  相似文献   

20.
Abstract— We have developed a high‐performance 55‐in. diagonal WXGA PDP module with a novel structure by using Extended ALIS (Alternate Lighting of Surfaces) technology. The new cell structure that uses the common bus electrode concept was invented with a new driving scheme aimed toward progressive lighting. A new method of reducing dynamic false contour (DFC), motion adaptive subfield coding, was also developed. The newly developed 55‐in. WXGA panel has a 1000‐cd/m2 peak luminance and a 160‐cd/m2 full‐screen white luminance with a 9000 K color temperature at a 350‐W display power consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号