首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Most previous advanced motion control of hydraulic actuators used full‐state feedback control techniques. However, in many cases, only position feedback is available, and thus, there are imperious demands for output‐feedback control for hydraulic systems. This paper firstly transforms a hydraulic model into an output feedback–dependent form. Thus, the K‐filter can be employed, which provides exponentially convergent estimates of the unmeasured states. Furthermore, this observer has an extended filter structure so that online parameter adaptation can be utilized. In addition, it is a well‐known fact that any realistic model of a hydraulic system suffers from significant extent of uncertain nonlinearities and parametric uncertainties. This paper constructs an adaptive robust controller with backstepping techniques, which is able to take into account not only the effect of parameter variations coming from various hydraulic parameters but also the effect of hard‐to‐model nonlinearities such as uncompensated friction forces, modeling errors, and external disturbances. Moreover, estimation errors that come from initial state estimates and uncompensated disturbances are dealt with via certain robust feedback at each step of the adaptive robust backstepping design. After that, a detailed stability analysis for the output‐feedback closed‐loop system is scrupulously checked, which shows that all states are bounded and that the controller achieves a guaranteed transient performance and final tracking accuracy in general and asymptotic output tracking in the presence of parametric uncertainties only. Extensive experimental results are obtained for a hydraulic actuator system and verify the high‐performance nature of the proposed output‐feedback control strategy.  相似文献   

2.
This paper addresses a new adaptive output tracking problem in the presence of uncertain plant dynamics and uncertain sensor failures. A new unified nominal state‐feedback control law is developed to deal with various sensor failures, which is directly constructed by state sensor outputs. Such a new state‐feedback compensation control law is able to ensure the desired plant‐model matching properties under different failure patterns. Based on the nominal compensation control design, a new adaptive compensation control scheme is proposed, which guarantees closed‐loop signal boundedness and asymptotic output tracking. The new adaptive compensation scheme not only expands the sensor failures types that the system could tolerate but also avoids some signal processing procedures that the traditional fault‐tolerant control techniques are forced to encounter. A complete stability analysis and a representative simulation study are conducted to evaluate the effectiveness of the proposed adaptive compensation control scheme.  相似文献   

3.
In this paper, we develop a new decentralized retrofit adaptive fault‐tolerant control design for a class of nonlinear models arising in flight control. The proposed adaptive fault‐tolerant controller is designed to accommodate loss‐of‐effectiveness (LoE) failures in flight control actuators and achieve accurate estimation of failure‐related parameters. The design is based on local estimation of LoE parameters and generation of local retrofit control signals to accommodate the failures. Using state‐dependent closed‐loop estimation errors, we show the overall system to be stable and demonstrate the tracking error to converge to zero asymptotically for any combination of actuator failures. Through computer simulation of F/A‐18 aircraft under actuator LoE failures, the proposed approach is also shown to achieve better parameter estimation performance compared to the fully centralized design and the design employing local observers and a centralized adaptive controller. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper proposes a robust active fault‐tolerant control (AFTC) approach for medium‐scale unmanned autonomous helicopter (UAH) with rotor flapping dynamics in the presence of unknown external disturbances and actuator faults. The robust items are adopted to improve the disturbance rejection capability of the UAH system. The adaptive fault observers are developed to estimate the fault parameters and the fault detection (FD) algorithms are presented to detect the actuator faults in different loops. In order to obtain satisfactory trajectory tracking performance, a backstepping‐based robust AFTC scheme is designed for the simplified 6‐degree‐of‐freedom (DOF) UAH nonlinear dynamics model and the global stability of the closed‐loop system is proved by using the Lyapunov method. Several groups of numerical simulation results are carried out to verify the effectiveness of the developed method.  相似文献   

5.
This paper considers the problem of adaptive fuzzy output‐feedback tracking control for a class of switched stochastic nonlinear systems in pure‐feedback form. Unknown nonlinear functions and unmeasurable states are taken into account. Fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy observer is designed to estimate the immeasurable states. Based on these methods, an adaptive fuzzy output‐feedback control scheme is developed by combining the backstepping recursive design technique and the common Lyapunov function approach. It is shown that all the signals in the closed‐loop system are semiglobally uniformly ultimately bounded in mean square in the sense of probability, and the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing appropriate parameters. Finally, a simulation result is provided to show the effectiveness of the proposed control method.  相似文献   

6.
This paper presents 2‐novel linear matrix inequality (LMI)‐based adaptive output feedback fault‐tolerant control strategies for the class of nonlinear Lipschitz systems in the presence of bounded matched or mismatched disturbances and simultaneous occurrence of actuator faults, including failure, loss of effectiveness, and stuck. The constructive algorithms based on LMI with creatively using Lyapunov stability theory and without the need for an explicit information about mode of actuator faults or fault detection and isolation mechanism are developed for online tuning of adaptive and fixed output‐feedback gains to stabilize the closed‐loop control system asymptotically. The proposed controllers guarantee to compensate actuator faults effects and to attenuate disturbance effects. The resulting control methods have simpler structure, as compared with most existing recent methods and more suitable for practical systems. The merits of the proposed fault‐tolerant control scheme have been verified by the simulation on nonlinear Boeing 747 lateral motion dynamic model subjected to actuator faults.  相似文献   

7.
An adaptive compensation control scheme using output feedback is designed and analysed for a class of non‐linear systems with state‐dependent non‐linearities in the presence of unknown actuator failures. For a linearly parameterized model of actuator failures with unknown failure values, time instants and pattern, a robust backstepping‐based adaptive non‐linear controller is employed to handle the system failure, parameter and dynamics uncertainties. Robust adaptive parameter update laws are derived to ensure closed‐loop signal boundedness and small tracking errors, in general, and asymptotic regulation, in particular. An application to controlling the angle of attack of a non‐linear hypersonic aircraft dynamic model in the presence of elevator segment failures is studied and simulation results show that the developed adaptive control scheme has desired actuator failure compensation performance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, an adaptive multi‐dimensional Taylor network (MTN) control scheme based on the backstepping and dynamic surface control (DSC) is developed to solve the tracking control problem for the stochastic nonlinear system with immeasurable states. The MTNs are used to approximate the unknown nonlinearities, and then based on the multivariable analog of circle criterion, an observer is first introduced to estimate the immeasurable states. By combining the adaptive backstepping technique and the DSC technique, an adaptive MTN output‐feedback backstepping DSC approach is developed. It is shown that the proposed controller ensures that all signals of the closed‐loop system are remain bounded in probability, and the tracking error converges to an arbitrarily small neighborhood around the origin in the sense of probability. Finally, the effectiveness of the design approach is illustrated by simulation results.  相似文献   

9.
This article focuses on the attitude and altitude tracking control of the tilt trirotor unmanned aerial vehicle (UAV) which is subject to modeling uncertainties and unknown external disturbances. A novel model free adaptive controller is designed to achieve asymptotic tracking control of the UAV attitude and altitude channels. The control scheme is based on the data driven strategy, and relies on the input/output data to estimate the system dynamics online. Furthermore, the discrete sliding mode algorithm is combined to enhance the system robustness, and the quaternion feedback is employed to avoid the singularity associated with the attitude control design. The stability of closed-loop system and the convergence of the tracking errors are proved. And real time flight experiments are preformed on a tilt trirotor UAV control testbed. The experimental results verify the effectiveness of the proposed control scheme and achieve a strong robustness with respect to the modeling uncertainties and unknown external disturbances.  相似文献   

10.
This paper investigates the leader–follower consensus problem of uncertain nonlinear systems in strict‐feedback form. By parameterizations of unknown nonlinear dynamics of the agents, an adaptive dynamic surface control with the aid of predictors, tracking differentiators is proposed to realize output consensus of the multi‐agent systems. Unlike the existing adaptive consensus methods, the predictor errors are used to learn the unknown parameters, which can achieve fast learning without high‐frequency signals in control inputs. As a fast precise signal filter, the tracking differentiator is used in the control design instead of first‐order filters, which can further improve the control performance. Based on graph theory and Lyapunov stability theory, it is shown that the outputs of all followers ultimately synchronize to that of the leader with bounded tracking errors. Simulation results are provided to validate the effectiveness and advantage of the proposed consensus algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Rejection of unknown periodic disturbances in multi‐channel systems has several industrial applications that include aerospace, consumer electronics, and many other industries. This paper presents a design and analysis of an output‐feedback robust adaptive controller for multi‐input multi‐output continuous‐time systems in the presence of modeling errors and broadband output noise. The trade‐off between robust stability and performance improvement as well as practical design considerations for performance improvements are presented. It is demonstrated that proper shaping of the open‐loop plant singular values as well as over‐parameterizing the controller parametric model can significantly improve performance. Numerical simulations are performed to demonstrate the effectiveness of the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper investigates the robust adaptive fault‐tolerant control problem for state‐constrained continuous‐time linear systems with parameter uncertainties, external disturbances, and actuator faults including stuck, outage, and loss of effectiveness. It is assumed that the knowledge of the system matrices, as well as the upper bounds of the disturbances and faults, is unknown. By incorporating a barrier‐function like term into the Lyapunov function design, a novel model‐free fault‐tolerant control scheme is proposed in a parameter‐dependent form, and the state constraint requirements are guaranteed. The time‐varying parameters are adjusted online based on an adaptive method to prevent the states from violating the constraints and compensate automatically the uncertainties, disturbances, and actuator faults. The time‐invariant parameters solved by using data‐based policy iteration algorithm are introduced for helping to stabilize the system. Furthermore, it is shown that the states converge asymptotically to zero without transgression of the constraints and all signals in the resulting closed‐loop system are uniformly bounded. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper focuses on a finite‐time adaptive fuzzy control problem for nonstrict‐feedback nonlinear systems with actuator faults and prescribed performance. Compared with existing results, the finite‐time prescribed performance adaptive fuzzy output feedback control is under study for the first time. By designing performance function, the transient performance of the corresponding controlled variable is maintained in a prescribed area. Combining the finite‐time stability criterion with backstepping technique, a feasible adaptive fault‐tolerant control scheme is proposed to guarantee that the system output converges to a small neighborhood of the origin in finite time, and the closed‐loop signals are bounded. Finally, simulation results are shown to illustrate the effectiveness of the presented control method.  相似文献   

14.
In this paper, an adaptive fault‐tolerant attitude coordinated tracking problem for spacecraft formation is investigated under a directed communication topology containing a spanning tree with the leader as the root, where inertia matrices and external disturbances are unknown time‐varying. With no prior knowledge of faults and inertia, an adaptive approach is proposed to reject the influence of disturbances and uncertainties. Meanwhile, combining with a consensus algorithm and graph theory, an adaptive fault‐tolerant attitude synchronization tracking control law is presented to regulate the attitude to a common time‐varying reference state. Aiming at optimizing the control law, a dynamic adjustment function is introduced to adjust the control gain according to the attitude tracking error. The effectiveness of the proposed control approach is demonstrated through simulation results.  相似文献   

15.
We propose a fault tolerant control scheme that compensates for actuator faults by adjusting the controller gain based on an estimate of the fault magnitude. The scheme consists of a plant in closed loop with an observer‐based feedback tracking controller, which is adapted to the fault situation diagnosed by a fault detection and isolation algorithm. We give conditions for correct fault detection and isolation and for robust closed‐loop stability accounting for possible errors in the fault estimation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Design of global robust adaptive output‐feedback dynamic compensators for stabilization and tracking of a class of systems that are globally diffeomorphic into systems in generalized output‐feedback canonical form is investigated. This form includes as special cases the standard output‐feedback canonical form and various other forms considered previously in the literature. Output‐dependent non‐linearities are allowed to enter both additively and multiplicatively. The system is allowed to contain unknown parameters multiplying output‐dependent non‐linearities and, also, unknown non‐linearities satisfying certain bounds. Under the assumption that a constant matrix can be found to achieve a certain property, it is shown that a reduced‐order observer and a backstepping controller can be designed to achieve practical stabilization of the tracking error. If this assumption is not satisfied, it is shown that the control objective can be achieved by introducing additional dynamics in the observer. Sufficient conditions under which asymptotic tracking and stabilization can be achieved are also given. This represents the first robust adaptive output‐feedback tracking results for this class of systems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
This paper focuses on an adaptive robust dynamic surface control (ARDSC) with composite adaptation laws (CAL) for a class of uncertain nonlinear systems in semi‐strict feedback form. A simple and effective controller has been obtained by introducing dynamic surface control (DSC) technique and designing novel adaptation laws. First, the ‘explosion of terms’ problem caused by backstepping method in the traditional adaptive robust control (ARC) is avoided. Meanwhile, through a new proof philosophy the asymptotical output tracking that the ARC possesses is theoretically preserved. Second, when persistent excitation (PE) condition satisfies, true parameter estimates could be acquired via designing CALs which integrate the information of estimation errors. Finally, simulation results are presented to illustrate the effectiveness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents the design of a power system stabilizer using decentralized adaptive model following tracking control (DAMFTC) approach to damp oscillations of generators in transient response subjected to uncertainties and generating fault actuators. The power system is represented as a collection of interconnected dynamical subsystems each described by a set of differential/algebraic equations using a clear representation of load voltage magnitude with matched and unmatched time‐varying uncertainties. All adaptive learning algorithms in this control system are derived in the sense of Lyapunov stability analysis subject to state errors due to uncertainties and fault section, so that stability and robustness of the closed‐loop system are ensured and asymptotic‐state tracking can be achieved. An adaptive bound estimation algorithm is investigated to relax the requirement for the bound of uncertainties. The effectiveness of the proposed approach is demonstrated by distributing a detailed simulation of the three‐machine nine‐bus system with nonlinear interactions, uncertainties, and fault actuators. The simulation includes the effects of network and stator transients. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates an adaptive neural tracking control for a class of nonstrict‐feedback stochastic nonlinear time‐delay systems with input saturation and output constraint. First, the Gaussian error function is used to represent a continuous differentiable asymmetric saturation model. Second, the appropriate Lyapunov‐Krasovskii functional and the property of hyperbolic tangent functions are used to compensate the time‐delay effects, the neural network is used to approximate the unknown nonlinearities, and a barrier Lyapunov function is designed to ensure that the output parameters are restricted. At last, based on Lyapunov stability theory, a robust adaptive neural control method is proposed, and the designed controller decreases the number of learning parameters and thus reduces the computational burden. It is shown that the designed neural controller can ensure that all the signals in the closed‐loop system are 4‐Moment (or 2 Moment) semi‐globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of the origin. Two examples are given to further verify the effectiveness of the proposed approach.  相似文献   

20.
This work deals with the problem of a model reference tracking based on the design of an active fault tolerant control for linear parameter‐varying systems affected by actuator faults and unknown inputs. Linear parameter‐varying systems are described by a polytopic representation with measurable gain scheduling functions. The main contribution is to design an active fault tolerant controller whose control law is described by an adaptive proportional integral structure. This one requires 3 types of online information, which are reference outputs, measured real outputs, and the fault estimation provided by a model reference, sensors, and an adaptive polytopic observer, respectively. These types of information are used to reconfigure the designed controller, which is able to compensate the fault effects and to make the closed‐loop system able to track reference outputs in spite of the presence of actuator faults and disturbances. The controller and the observer gains are obtained by solving a set of linear matrices inequalities. Performances of the proposed method are compared to another previous method to underline the relevant results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号