首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Processing solvent additives in polymer:fullerene bulk heterojunction systems are known as a promising method to enhance photovoltaic performance. It is generally agreed that solvent additives enable polymers to have a high degree of molecular order which increases the device performance. However, the understanding of the efficiency enhancement is not complete. There is a lack of insight regarding the quantitative determination of the molecular miscibility between polymer and fullerene as well as the inner morphology changes induced by the additives. In this work, understanding of the influence of the solvent additive 1,8‐octanedithiol (ODT) is provided on the classic system poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61 butyric acid methyl ester (P3HT:PCBM) films. The impact on polymer crystallinity, surface structure, inner morphology, and quantitative molecular miscibility of P3HT and PCBM is studied as a function of ODT volume concentration. The crystallinity is probed with absorption spectroscopy and grazing incidence wide‐angle X‐ray scattering. The morphology and miscibility are characterized via atomic force microscopy and time‐of‐flight grazing incidence small angle neutron scattering. Besides an increased crystallinity and prominent phase separation, ODT increases the solubility of PCBM in P3HT and reduces the size of amorphous P3HT domains. Moreover, solvent processing with a high ODT concentration alters the vertical material composition of the active layer.  相似文献   

2.
The impact of controlled solvent vapor exposure on the morphology, structural evolution, and function of solvent‐processed poly(3‐hexylthiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) bilayers is presented. Grazing incident wide angle X‐ray scattering (GIWAXS) shows that the crystallization of P3HT increases with solvent exposure, while neutron reflectivity shows that P3HT simultaneously diffuses into PCBM, indicating that an initial bilayer structure evolves into a bulk heterojunction structure. Small angle neutron scattering (SANS) shows the agglomeration of PCBM and the formation of a PCBM pure phase when solvent annealing for 90 min. The structural evolution can be described as occurring in two stages: the first stage combines the enhanced crystallization of P3HT and diffusion of PCBM into P3HT, while the second stage entails the agglomeration of PCBM and formation of a PCBM pure phase. The phase separation of PCBM from P3HT is not driven by P3HT crystallinity, but is due to the concentration of PCBM exceeding the miscibility limit of PCBM in P3HT. Correlation of the morphology to photovoltaic activity shows that device performance significantly improves with solvent annealing for 90 min, indicating that both sufficient P3HT crystallization and formation of a PCBM pure phase are crucial in the optimization of the morphology of the active layer.  相似文献   

3.
The in situ morphology change upon thermal annealing in bulk heterojunction blend films of regioregular poly(3‐hexylthiophene) (P3HT) and 1‐(3‐methoxycarbonyl)‐propyl‐1‐phenyl‐(6,6)C61 (PCBM) is measured by a grazing incidence X‐ray diffraction (GIXD) method using a synchrotron radiation source. The results show that the film morphology—including the size and population of P3HT crystallites—abruptly changes at 140 °C between 5 and 30 min and is then stable up to 120 min. This trend is almost in good agreement with the performance change of polymer solar cells fabricated under the same conditions. The certain morphology change after 5 min annealing at 140 °C is assigned to the on‐going thermal transition of P3HT molecules in the presence of PCBM transition. Field‐emission scanning electron microscopy measurements show that the crack‐like surface of blend films becomes smaller after a very short annealing time, but does not change further with increasing annealing time. These findings indicate that the stability of P3HT:PCBM solar cells cannot be secured by short‐time annealing owing to the unsettled morphology, even though the resulting efficiency is high.  相似文献   

4.
Solution‐processed thin polymer films have many applications, such as organic electronics and block‐copolymer nanofabrication. These films are often made by spin coating a solution that contains one or more solids and can show different phase‐separated structures. The formation mechanism of the droplet‐like morphology is studied here by processing polystyrene (PS) and a fullerene derivative ([6,6]‐phenyl‐C71‐butyric acid methyl ester, [70]PCBM) from o‐xylene. The final structure consists of [70]PCBM droplets partially embedded in a PS‐rich matrix showing interdomain distance of 100–1000 nm as determined from transmission electron microscopy and grazing incidence small angle X‐ray scattering (GISAXS). To elucidate the formation of these morphologies in real time, ultrafast in situ GISAXS coupled with laser interferometry and laser scattering is performed during spin coating. In situ thickness measurements and laser scattering show that liquid–liquid phase separation occurs at ≈70 vol% solvent. Subsequently, in only 100–400 ms, almost dry [70]PCBM domains start to protrude from the swollen PS‐rich matrix. These results are used to verify the ternary phase diagram calculated using Flory–Huggins theory. The discussed multitechnique approach can be applied to study fundamental aspects in soft matter such as phase separation in thin films occurring at very short time scales.  相似文献   

5.
Here the influence that 1‐(3‐hexoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐Lu3N@C81, Lu3N@C80–PCBH, a novel acceptor material, has on active layer morphology and the performance of organic photovoltaic (OPV) devices using this material is reported. Polymer/fullerene blend films with poly(3‐hexylthiophene), P3HT, donor material and Lu3N@C80–PCBH acceptor material are studied using absorption spectroscopy, grazing incident X‐ray diffraction and photocurrent spectra of photovoltaic devices. Due to a smaller molecular orbital offset the OPV devices built with Lu3N@C80–PCBH display increased open circuit voltage over empty cage fullerene acceptors. The photovoltaic performance of these metallo endohedral fullerene blend films is found to be highly impacted by the fullerene loading. The results indicate that the optimized blend ratio in a P3HT matrix differs from a molecular equivalent of an optimized P3HT/[6,6]‐phenyl‐C61‐butyric methyl ester, C60–PCBM, active layer, and this is related to the physical differences of the C80 fullerene. The influence that active layer annealing has on the OPV performance is further evaluated. Through properly matching the film processing and the donor/acceptor ratio, devices with power conversion efficiency greater than 4% are demonstrated.  相似文献   

6.
Grazing incidence X‐ray scattering (GIXS) is used to characterize the morphology of poly(3‐hexylthiophene) (P3HT)–phenyl‐C61‐butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom‐built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well‐oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer–fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high‐performance organic solar cell devices.  相似文献   

7.
Polymer solar cells (PSCs) with poly(3‐hexylthiophene) (P3HT) as a donor, an indene‐C70 bisadduct (IC70BA) as an acceptor, a layer of indium tin oxide modified by MoO3 as a positive electrode, and Ca/Al as a negative electrode are presented. The photovoltaic performance of the PSCs was optimized by controlling spin‐coating time (solvent annealing time) and thermal annealing, and the effect of the spin‐coating times on absorption spectra, X‐ray diffraction patterns, and transmission electron microscopy images of P3HT/IC70BA blend films were systematically investigated. Optimized PSCs were obtained from P3HT/IC70BA (1:1, w/w), which exhibited a high power conversion efficiency of 6.68%. The excellent performance of the PSCs is attributed to the higher crystallinity of P3HT and better a donor–acceptor interpenetrating network of the active layer prepared under the optimized conditions. In addition, PSCs with a poly(3,4‐ethylenedioxy‐thiophene):poly(styrenesulfonate) (PEDOT:PSS) buffer layer under the same optimized conditions showed a PCE of 6.20%. The results indicate that the MoO3 buffer layer in the PSCs based on P3HT/IC70BA is superior to that of the PEDOT:PSS buffer layer, not only showing a higher device stability but also resulting in a better photovoltaic performance of the PSCs.  相似文献   

8.
We investigate thin poly(3‐hexylthiophene‐2,5‐diyl)/[6,6]‐phenyl C61 butyric acid methyl ester (P3HT/PCBM) films, which are widely used as active layers in plastic solar cells. Their structural properties are studied by grazing‐incidence X‐ray diffraction (XRD). The size and the orientation of crystalline P3HT nanodomains within the films are determined. PCBM crystallites are not detected in thin films by XRD. Upon annealing, the P3HT crystallinity increases, leading to an increase in the optical absorption and spectral photocurrent in the low‐photon‐energy region. As a consequence, the efficiency of P3HT/PCBM solar cells is significantly increased. A direct relation between efficiency and P3HT crystallinity is demonstrated.  相似文献   

9.
Polymer solar cells are fabricated by a novel solution coating process, roller painting. The roller‐painted film – composed of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) – has a smoother surface than a spin‐coated film. Since the roller painting is accompanied by shear and normal stresses and is also a slow drying process, the process effectively induces crystallization of P3HT and PCBM. Both crystalline P3HT and PCBM in the roller‐painted active layer contribute to enhanced and balanced charge‐carrier mobility. Consequently, the roller‐painting process results in a higher power conversion efficiency (PCE) of 4.6%, as compared to that for spin coating (3.9%). Furthermore, annealing‐free polymer solar cells (PSCs) with high PCE are fabricated by the roller painting process with the addition of a small amount of octanedi‐1,8‐thiol. Since the addition of octanedi‐1,8‐thiol induces phase separation between P3HT and PCBM and the roller‐painting process induces crystallization of P3HT and PCBM, a PCE of roller‐painted PSCs of up to 3.8% is achieved without post‐annealing. A PCE of over 2.7% can also be achieved with 5 cm2 of active area without post‐annealing.  相似文献   

10.
The self‐organization of the polymer in solar cells based on regioregular poly(3‐hexylthiophene) (RR‐P3HT):[6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) is studied systematically as a function of the spin‐coating time ts (varied from 20–80 s), which controls the solvent annealing time ta, the time taken by the solvent to dry after the spin‐coating process. These blend films are characterized by photoluminescence spectroscopy, UV‐vis absorption spectroscopy, atomic force microscopy, and grazing incidence X‐ray diffraction (GIXRD) measurements. The results indicate that the π‐conjugated structure of RR‐P3HT in the films is optimally developed when ta is greater than 1 min (ts ~ 50 s). For t s < 50 s, both the short‐circuit current (JSC) and the power conversion efficiency (PCE) of the corresponding polymer solar cells show a plateau region, whereas for 50 < ts < 55 s, the JSC and PCE values are significantly decreased, suggesting that there is a major change in the ordering of the polymer in this time window. The PCE decreases from 3.6 % for a film with a highly ordered π‐conjugated structure of RR‐P3HT to 1.2 % for a less‐ordered film. GIXRD results confirm the change in the ordering of the polymer. In particular, the incident photon‐to‐electron conversion efficiency spectrum of the less‐ordered solar cell shows a clear loss in both the overall magnitude and the long‐wavelength response. The solvent annealing effect is also studied for devices with different concentrations of PCBM (PCBM concentrations ranging from 25 to 67 wt %). Under “solvent annealing” conditions, the polymer is seen to be ordered even at 67 wt % PCBM loading. The open‐circuit voltage (VOC) is also affected by the ordering of the polymer and the PCBM loading in the active layer.  相似文献   

11.
This work investigates the composition and morphology of films of poly(3‐hexylthiophene) (P3HT), polyfluorene co‐polymer poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(3‐hexylthien‐5‐yl)‐2,1,3‐benzothiadiazole]‐2′,2″‐diyl) (F8TBT) and blends thereof that are used in efficient all‐polymer solar cells. Ultraviolet photoemission spectroscopy (UPS) and X‐ray photoemission spectroscopy (XPS) studies on thin polymer and blend films on ZnO substrates reveal the existence of a 1–2 nm thick P3HT layer at the top surface of the blend films. XPS depth profiling studies reveal a density wave (λ ≈ 70 nm) originating from the air interface. As no preferential accumulation is observed at the bottom interface with ZnO, the composition at this interface is consistent with the original composition of the blend solution prior to spin‐coating. The morphology of this buried interface was studied by means of atomic force microscopy (AFM) and revealed that upon annealing the average domain size increases slightly (from 27 nm to 40 nm). It is observed that the photovoltaic performance of such inverted hybrid device improves upon annealing, however we believe this to mostly be a result of increased crystallinity in the P3HT domains leading to improved charge transport in the device, rather than changes in the blend phase separation.  相似文献   

12.
The one‐step preparation of highly anisotropic polymer semiconductor thin films directly from solution is demonstrated. The conjugated polymer poly(3‐hexylthiophene) (P3HT) as well as P3HT:fullerene bulk–heterojunction blends can be spin‐coated from a mixture of the crystallizable solvent 1,3,5‐trichlorobenzene (TCB) and a second carrier solvent such as chlorobenzene. Solidification is initiated by growth of macroscopic TCB spherulites followed by epitaxial crystallization of P3HT on TCB crystals. Subsequent sublimation of TCB leaves behind a replica of the original TCB spherulites. Thus, highly ordered thin films are obtained, which feature square‐centimeter‐sized domains that are composed of one spherulite‐like structure each. A combination of optical microscopy and polarized photoluminescence spectroscopy reveals radial alignment of the polymer backbone in case of P3HT, whereas P3HT:fullerene blends display a tangential orientation with respect to the center of spherulite‐like structures. Moreover, grazing‐incidence wide‐angle X‐ray scattering reveals an increased relative degree of crystallinity and predominantly flat‐on conformation of P3HT crystallites in the blend. The use of other processing methods such as dip‐coating is also feasible and offers uniaxial orientation of the macromolecule. Finally, the applicability of this method to a variety of other semi‐crystalline conjugated polymer systems is established. Those include other poly(3‐alkylthiophene)s, two polyfluorenes, the low band‐gap polymer PCPDTBT, a diketopyrrolopyrrole (DPP) small molecule as well as a number of polymer:fullerene and polymer:polymer blends.  相似文献   

13.
Spray coating, a simple and low‐cost technique for large‐scale film deposition, is employed to fabricate mesoporous titania films, which are electron‐transporting layers in all‐solid‐state dye‐sensitized solar cells (DSSCs). To optimize solar cell performance, presynthesized crystalline titania nanoparticles are introduced into the mesoporous titania films. The composite film morphology is examined with scanning electron microscopy, grazing incidence small‐angle X‐ray scattering, and nitrogen adsorption–desorption isotherms. The crystal phase and crystallite sizes are verified by X‐ray diffraction measurements. The photovoltaic performance of all‐solid‐state DSSCs is investigated. The findings reveal that an optimal active layer of the all‐solid‐state DSSC is obtained by including 50 wt% titania nanoparticles, showing a foam‐like morphology with an average pore size of 20 nm, featuring an anatase phase, and presenting a surface area of 225.2 m2 g?1. The optimized morphology obtained by adding 50 wt% presynthesized crystalline titania nanoparticles yields, correspondingly, the best solar cell efficiency of 2.7 ± 0.1%.  相似文献   

14.
Changes in the nanoscale morphologies of the blend films of poly (3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), for high‐performance bulk‐heterojunction (BHJ) solar cells, are compared and investigated for two annealing treatments with different morphology evolution time scales, having special consideration for the diffusion and aggregation of PCBM molecules. An annealing condition with relatively fast diffusion and aggregation of the PCBM molecules during P3HT crystallization results in poor BHJ morphology because of prevention of the formation of the more elongated P3HT crystals. However, an annealing condition, accelerating PCBM diffusion after the formation of a well‐ordered morphology, results in a relatively stable morphology with less destruction of crystalline P3HT. Based on these results, an effective strategy for determining an optimized annealing treatment is suggested that considers the effect of relative kinetics on the crystallization of the components for a blend film with a new BHJ materials pair, upon which BHJ solar cells are based.  相似文献   

15.
The evolution of nanomorphology within thin solid‐state films of poly(3‐alkylthiophene):[6,6]‐phenyl‐C61 butyric acid methyl ester (P3AT:PCBM) blends during the film formation and subsequent thermal annealing is reported. In detail, the influence of the P3AT's alkyl side chain length on the polymer/fullerene phase separation is discussed. Butyl, hexyl, octyl, decyl, and dodecyl side groups are investigated. All of the P3ATs used were regioregular. To elucidate the nanomorphology, atomic force microscopy (AFM), X‐ray diffraction, and optical spectroscopy are applied. Furthermore, photovoltaic devices of each of the different P3ATs have been constructed, characterized, and correlated with the nanostructure of the blends. It is proposed that the thermal‐annealing step, commonly applied to these P3AT:PCBM blend films, controls two main issues at the same time: a) the crystallization of P3AT and b) the phase separation and diffusion of PCBM. The results show that PCBM diffusion is the main limiting process for reaching high device performances.  相似文献   

16.
How annealing influences the morphology of a highly regioregular poly(3‐hexylthiophene) (RR‐P3HT) film at the substrate interface as well as the lateral inhomogeneity in the electronic structure of the film are elucidated. Whereas previous studies have reported that high‐molecular‐weight (MW) RR‐P3HT films tend to show low crystallinity even after annealing, it is found that high‐MW RR‐P3HT does show high crystallinity after annealing at high temperature for a long time. Photoemission electron microscopy (PEEM), X‐ray photoemission spectroscopy, and ultraviolet photoemission spectroscopy results clearly resolve a considerable lateral inhomogeneity in the morphology of RR‐P3HT film, which results in a variation of the electronic structure depending on the local crystallinity. The PEEM results show how annealing facilitates crystal growth in a high‐MW RR‐P3HT film.  相似文献   

17.
Significant efforts have lead to demonstrations of nonfullerene solar cells (NFSCs) with record power conversion efficiency up to ≈13% for polymer:small molecule blends and ≈9% for all‐polymer blends. However, the control of morphology in NFSCs based on polymer blends is very challenging and a key obstacle to pushing this technology to eventual commercialization. The relations between phases at various length scales and photovoltaic parameters of all‐polymer bulk‐heterojunctions remain poorly understood and seldom explored. Here, precise control over a multilength scale morphology and photovoltaic performance are demonstrated by simply altering the concentration of a green solvent additive used in blade‐coated films. Resonant soft X‐ray scattering is used to elucidate the multiphasic morphology of these printed all‐polymeric films and complements with the use of grazing incidence wide‐angle X‐ray scattering and in situ spectroscopic ellipsometry characterizations to correlate the morphology parameters at different length scales to the device performance metrics. Benefiting from the highest relative volume fraction of small domains, additive‐free solar cells show the best device performance, strengthening the advantage of single benign solvent approach. This study also highlights the importance of high volume fraction of smallest domains in printed NFSCs and organic solar cells in general.  相似文献   

18.
Here, an investigation of three‐dimensional (3D) morphologies for bulk heterojunction (BHJ) films based on regioregular poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) is reported. Based on the results, it is demonstrated that optimized post‐treatment, such as solvent annealing, forces the PCBM molecules to migrate or diffuse toward the top surface of the BHJ composite films, which induces a new vertical component distribution favorable for enhancing the internal quantum efficiency (ηIQE ) of the devices. To investigate the 3D BHJ morphology, novel time‐of‐flight secondary‐ion mass spectroscopy studies are employed along with conventional methods, such as UV‐vis absorption, X‐ray diffraction, and high‐resolution transmission electron microscopy studies. The ηIQE of the devices are also compared after solvent annealing for different times, which clearly shows the effect of the vertical component distribution on the performance of BHJ polymer solar cells. In addition, the fabrication of high‐performance P3HT:PCBM solar cells using the optimized solvent‐annealing method is reported, and these cells show a mean power‐conversion efficiency of 4.12% under AM 1.5G illumination conditions at an intensity of 100 mW cm?2.  相似文献   

19.
A method which enables the investigation of the buried interfaces without altering the properties of the polymer films is used to study vertical phase separation of spin‐coated poly(3‐hexylthiophene) (P3HT):fullerene derivative blends. X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analysis reveals the P3HT enrichment at the free (air) surfaces and abundance of fullerene derivatives at the organic/substrate interfaces. The vertical phase separation is attributed to the surface energy difference of the components and their interactions with the substrates. This inhomogeneous distribution of the donor and acceptor components significantly affects photovoltaic device performance and makes the inverted device structure a promising choice.  相似文献   

20.
Crystallization and phase segregation during thermal annealing lead to the increase of power‐conversion efficiency in poly(3‐hexylthiophene) (P3HT):[6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) bulk‐heterojunction solar cells. An understanding of the length and time scale on which crystallization and phase segregation occur is important to improve control of the nanomorphology. Crystallization is monitored by means of grazing incidence X‐ray diffraction in real time during thermal annealing. Furthermore, the change in film density is monitored by means of ellipsometry and the evolution of carrier mobilities by means of field effect transistors, both during annealing. From the combination of such measurements with those of device performance as a function of annealing time, it is concluded that the evolution of microstructure involves two important time windows: i) A first one of about 5 minutes duration wherein crystallization of the polymer correlates with a major increase of photocurrent; ii) a second window of about 30 minutes during which the aggregation of PCBM continues, accompanied by an increase in the fill factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号