首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Absolute calibration of WindSat's third and fourth Stokes brightness temperatures (T/sub 3/ and T/sub 4/) is needed at the tenth of Kelvin level in order to adequately resolve their dependence on wind direction. Previous aircraft based fully polarimetric microwave radiometers have generally relied on "circle flights", during which a single area of the ocean is observed at all azimuth angles, to estimate residual biases in the calibration of its polarimetric channels. WindSat, the first spaceborne fully polarimetric microwave radiometer, operates in low Earth orbit and thus cannot execute this traditional calibration technique. A new method is presented to estimate the residual biases that are present in WindSat's T/sub 3/ and T/sub 4/ estimates. The method uses a vicarious cold reference brightness temperature applied to measurements made by WindSat at /spl plusmn/45/spl deg/ slant linear (T/sub P/ and T/sub M/) and left- and right-hand circular (T/sub L/ and T/sub R/) polarization. WindSat derives the third and fourth Stokes brightness temperatures by the differences T/sub P/-T/sub M/ and T/sub L/-T/sub R/, respectively. The method is demonstrated by applying it to the 10.7-GHz WindSat observations. Calibration biases of 0.2-0.6 K are determined with a precision of 0.04 K.  相似文献   

2.
A new method for estimating the atmospheric transmittance and wind speed over the ocean from WindSat data is derived using a simplified model for the ocean surface reflectivity. The simplified reflectivity model is used to calculate both the surface emissivity and the reflection of downwelling atmospheric radiation. The wind-speed dependence of the surface reflectivity is parameterized using simple rational functions with coefficients determined from the WindSat data. Because the vertically polarized brightness temperature depends primarily on the atmospheric state, it is used to obtain an initial estimate of the atmospheric transmittance at each spatial location. These estimates are then combined with the horizontally polarized brightness temperature to estimate the wind speed at each location. The first wind-speed estimate is used to refine the estimate of the transmittance, and the process is repeated until the estimates converge, resulting in a simultaneous solution for the atmospheric transmittance and the wind speed. The results are illustrated for two WindSat data sets collected on September 12 and 14, 2003. We have also investigated two methods of estimating wind direction using WindSat measurements of the third and fourth Stokes parameters. The first method involves an algebraic solution for the wind direction from simultaneous measurements of the third and fourth Stokes parameters. The second method involves measurements of the third Stokes parameter from two look directions (fore and aft scan angles), made possible by the conical scanning geometry of WindSat. A comparison and evaluation of these methods is made using the same data sets.   相似文献   

3.
Predictions of the polarized microwave brightness temperatures over the ocean are made using a two-scale surface bidirectional reflectance model combined with an atmospheric radiative transfer model. The reflected atmospheric radiation is found to contribute significantly to the magnitude and directional dependence of the brightness temperatures. The predicted brightness temperatures are also sensitive to the form of the shortwave spectrum. Calculations are made using a new physically based model for the wave spectrum, and preliminary comparisons are made with WindSat observations at 10.7, 18.7, and 37 GHz, for wind speeds ranging from 0-20 m/s and for vertically integrated atmospheric water vapor concentrations from 0-70 mm. Predictions of the mean (azimuthally averaged) brightness temperatures for vertical and horizontal polarization agree quite well with WindSat observations over this range of wind speeds and water vapor concentrations. The predicted azimuthal variations of the third and fourth Stokes parameters also agree fairly well with the observations, except for the fourth Stokes parameter at 37 GHz. Further adjustments of the wave spectrum are expected to improve the agreement.  相似文献   

4.
Radio-frequency interference (RFI) in the spaceborne multichannel radiometer data of WindSat and the Advanced Microwave Scanning Radiometer-EOS is currently being detected using a spectral difference technique. Such a technique does not explicitly utilize multichannel correlations of radiometer data, which are key information in separating RFI from natural radiations. Furthermore, it is not optimal for radiometer data observed over ocean regions due to the inherent large natural variability of spectral difference over ocean. In this paper, we first analyzed multivariate WindSat and Scanning Multichannel Microwave Radiometer (SMMR) data in terms of channel correlation, information content, and principal components of WindSat and SMMR data. Then two methods based on channel correlation were developed for RFI detection over land and ocean. Over land, we extended the spectral difference technique using principal component analysis (PCA) of RFI indices, which integrates statistics of target emission/scattering characteristics (through RFI indices) and multivariate correlation of radiometer data into a single statistical framework of PCA. Over ocean, channel regression of X-band can account for nearly all of the natural variations in the WindSat data. Therefore, we use a channel regression-based model difference technique to directly predict RFI-free brightness temperature, and therefore RFI intensity. Although model difference technique is most desirable, it is more difficult to apply over land due to heterogeneity of land surfaces. Both methods improve our knowledge of RFI signatures in terms of channel correlations and explore potential RFI mitigation, and thus provide risk reductions for future satellite passive microwave missions such as the NPOESS Conical Scanning Microwave Imager/Sounder. The new RFI algorithms are effective in detecting RFI in the C- and X-band Windsat radiometer channels over land and ocean.  相似文献   

5.
A geophysical model function (GMF), relating the directional response of polarimetric brightness temperatures to ocean surface winds, is developed for the WindSat multifrequency polarimetric microwave radiometer. This GMF is derived from the WindSat data and tuned with the aircraft radiometer measurements for very high winds from the Hurricane Ocean Wind Experiment in 1997. The directional signals in the aircraft polarimetric radiometer data are corroborated by coincident Ku-band scatterometer measurements for wind speeds in the range of 20-35 m/s. We applied an iterative retrieval algorithm using the polarimetric brightness temperatures from 18-, 23-, and 37-GHz channels. We find that the root-mean-square direction difference between the Global Data Assimilation System winds and the closest WindSat wind ambiguity is less than 20/spl deg/ for above 7-m/s wind speed. The retrieval analysis supports the consistency of the Windrad05 GMF with the WindSat data.  相似文献   

6.
WindSat is a space-based polarimetric microwave radiometer designed to demonstrate the capability to measure the ocean surface wind vector using a radiometer. We describe a nonlinear iterative algorithm for simultaneous retrieval of sea surface temperature, columnar water vapor, columnar cloud liquid water, and the ocean surface wind vector from WindSat measurements. The algorithm uses a physically based forward model function for the WindSat brightness temperatures. Empirical corrections to the physically based model are discussed. We present evaluations of initial retrieval performance using a six-month dataset of WindSat measurements and collocated data from other satellites and a numerical weather model. We focus primarily on the application to wind vector retrievals.  相似文献   

7.
Ku-band (13.3 GHz) scatterometer and K-band (19.4 GHz) radiometer data acquired by the CCRS CV-580 aircraft over the period from 1979 to 1982 in Canadian and Danish (Greenland) coastal waters have been analyzed to determine the seasonal and regional variations of microwave sea-ice signatures. A clustering analysis of the like and cross-polarized scattering cross sections, ?HHo and ?HVo, and the H polarized emissivity ?H, has been used to identify distinct microwave sea-ice signatures for each ice type and to trace the evolution of these signatures with region and season. Ice-type signatures in the high Arctic under cold conditions are quite stable, and major ice classes are readily identified from microwave measurements. Under warmer conditions the signatures change with the structure, moisture content of the snow pack, and with the free water in the surface layers of the underlying ice. An attempt is made to create a consistent picture of the microwave signature transformation by grouping the data into " seaice seasons" (snow and ice surface transformation stages). The separation between microwave ice-class signatures reaches a minimum at the peak of the summer melt.  相似文献   

8.
There has been an increasing interest in the applications of polarimetric microwave radiometers for ocean wind remote sensing. Aircraft and spaceborne radiometers have found a few Kelvins wind direction signals in sea surface brightness temperatures, in addition to their sensitivities to wind speeds. However, it was not clear what physical scattering mechanisms produced the observed brightness dependence on wind direction. To this end, polarimetric microwave emissions from wind-generated sea surfaces are investigated with a polarimetric two-scale scattering model, which relates the directional wind-wave spectrum to passive microwave signatures of sea surfaces. Theoretical azimuthal modulations are found to agree well with experimental observations for all Stokes parameters from near nadir to 65° incidence angles. The upwind and downwind asymmetries of brightness temperatures were interpreted using the hydrodynamic modulation. The contributions of Bragg scattering by short waves, geometric optics scattering by long waves and sea foam are examined. The geometric optics scattering mechanism underestimates the directional signals in the first three Stokes parameters, and predicts no signals in the fourth Stokes parameter (V). In contrast, the Bragg scattering was found to dominate the wind direction signals from the two-scale model and correctly predicted the phase changes of the upwind and crosswind asymmetries in Tυ and U from middle to high incidence angles. The phase changes predicted by the Bragg scattering theory for radiometric emission from water ripples is corroborated by the numerical Monte Carlo simulation of rough surface scattering. This theoretical interpretation indicates the potential use of polarimetric brightness temperatures for retrieving the directional wave spectrum of short gravity and capillary waves  相似文献   

9.
The retrieval of ocean surface wind fields in both one and two dimensions is demonstrated using passive polarimetric microwave imagery obtained from a conical-scanning airborne polarimeter. The retrieval method is based on an empirical geophysical model function (GMF) for ocean surface thermal emission and an adaptive maximum likelihood (ML) wind vector estimator. Data for the GMF were obtained using the polarimetric scanning radiometer/digital (PSR/D) on the NASA P-3 aircraft during the Labrador Sea Deep Convection Experiment in 1997. To develop the GMF, a number of buoy overflights and GPS dropsondes were used, out of which a GMF of 10.7, 18.7, and 37.0 GHz azimuthal harmonics for the first three Stokes parameters was constructed for the SSM/I incident angle of 53.1°. The data show repeatable azimuthal harmonic coefficient amplitudes of ~2-3 K peak-to-peak, with a 100% increase in harmonic amplitudes as the frequency is increased from 10.7 to 37 GHz. The GMF is consistent with and extends the results of two independent studies of SSM/I data and also provides a model for the third Stokes parameter over wind speeds up to 20 m/s. The aircraft data show that the polarimetric channels are much less susceptible to geophysical noise associated with maritime convection than the first two Stokes parameters. The polarimetric measurement technique used in the PSR/D also demonstrates the viability of digital correlation radiometry for aircraft or satellite measurements of the full Stokes vector. The ML retrieval algorithm incorporates the additional information on wind direction available from multiple looks and polarimetric channels in a straightforward manner and accommodates the reduced SNRs of the first two Stokes parameters in the presence of convection by weighting these channels by their inverse SNR  相似文献   

10.
The global ocean surface wind vector is a key parameter for short-term weather forecasting, the issuing of timely weather warnings, and the gathering of general climatological data. In addition, it affects a broad range of naval missions, including strategic ship movement and positioning, aircraft carrier operations, aircraft deployment, effective weapons use, underway replenishment, and littoral operations. WindSat is a satellite-based multifrequency polarimetric microwave radiometer developed by the Naval Research Laboratory for the U.S. Navy and the National Polar-orbiting Operational Environmental Satellite System Integrated Program Office. It is designed to demonstrate the capability of polarimetric microwave radiometry to measure the ocean surface wind vector from space. The sensor provides risk reduction for the development of the Conical Microwave Imager Sounder, which is planned to provide wind vector data operationally starting in 2010. WindSat is the primary payload on the Department of Defense Coriolis satellite, which was launched on January 6, 2003. It is in an 840-km circular sun-synchronous orbit. The WindSat payload is performing well and is currently undergoing rigorous calibration and validation to verify mission success.  相似文献   

11.
The WindSat microwave polarimetric radiometer consists of 22 channels of polarized brightness temperatures operating at five frequencies: 6.8, 10.7, 18.7, 23.8, and 37.0 GHz. The 10.7-, 18.7-, and 37.0-GHz channels are fully polarimetric (vertical/horizontal, /spl plusmn/45/spl deg/ and left-hand and right-hand circularly polarized) to measure the four Stokes radiometric parameters. The principal objective of this Naval Research Laboratory experiment, which flys on the USAF Coriolis satellite, is to provide the proof of concept of the first passive measurement of ocean surface wind vector from space. This paper presents details of the on-orbit absolute radiometric calibration procedure, which was performed during of a series of satellite pitch maneuvers. During these special tests, the satellite pitch was slowly ramped to +45/spl deg/ (and -45/spl deg/), which caused the WindSat conical spinning antenna to view deep space during the forward (or aft portion) of the azimuth scan. When viewing the homogeneous and isotropic brightness of space (2.73 K) through both the main reflector and the cold-load calibration reflector, it is possible to determine the absolute calibration of the individual channels and the relative calibration bias between polarimetric channels. Results demonstrate consistent and stable channel calibrations (with very small brightness biases) that exceed the mission radiometric calibration requirements.  相似文献   

12.
Dual-frequency (19 and 37 GHz), multi-incidence measurements of the Stokes parameters of sea surface microwave emission are reported. A series of aircraft polarimetric radiometer flights were carried out over the National Data Buoy Center (NDBC) moored buoys deployed off the northern California coast in July and August 1994. Measured radiometric temperatures showed a few Kelvin azimuth modulations in all Stokes parameters with respect to the wind direction. Wind directional signals observed in the 37-GHz channel were similar to those in the 19-GHz channel. This indicates that the wind direction signals in sea surface brightness temperatures have a weak frequency dependence in the range of 19-37 GHz. Harmonic coefficients of the wind direction signals were derived from experimental data versus incidence angle. It was found that the first harmonic coefficients, which are caused by the up and downwind asymmetric surface features, had a small increasing trend with the incidence angle. In contrast, the second harmonic coefficients, caused by the up and crosswind asymmetry, showed significant variations in T v and U data, with a sign change when the incidence angle increased from 45° to 65°. Besides the first three Stokes parameters, the fourth Stokes parameter, V, which had never been measured before for sea surfaces, was measured using our 19-GHz channel. The Stokes parameter V. Has an odd symmetry just like that of the third Stokes parameter U, and increases with increasing incidence angles. In summary, sea surface features created by surface winds are anisotropic in azimuth direction and modulate all Stokes parameters of sea surface microwave brightness temperatures by as large as a few Kelvin in the range of incidence angles from 45° to 65° applicable to spaceborne observations  相似文献   

13.
Evaluation of hurricane ocean vector winds from WindSat   总被引:1,自引:0,他引:1  
The ability to accurately measure ocean surface wind vectors from space in all weather conditions is important in many scientific and operational usages. One highly desirable application of satellite-based wind vector retrievals is to provide realistic estimates of tropical cyclone intensity for hurricane monitoring. Historically, the extreme environmental conditions in tropical cyclones (TCs) have been a challenge to traditional space-based wind vector sensing provided by microwave scatterometers. With the advent of passive microwave polarimetry, an alternate tool for estimating surface wind conditions in the TC has become available. This paper evaluates the WindSat polarimetric radiometer's ability to accurately sense winds within TCs. Three anecdotal cases studies are presented from the 2003 Atlantic Hurricane season. Independent surface wind estimates from aircraft flights and other platforms are used to provide surface wind fields for comparison to WindSat retrievals. Results of a subjective comparison of wind flow patterns are presented as well as quantitative statistics for point location comparisons of wind speed and direction.  相似文献   

14.
Polarimetric signatures and related polarimetric properties of microwave ocean backscatter are analyzed for both the ambient ocean and for ocean features such as those associated with the Gulf Stream. Interpretation of the polarimetric signatures for the ocean surface is accomplished using a tilted-Bragg theoretical model. This model is used to calculate the EM fields, to second order, which is necessary to compute the full Stokes matrix and, ultimately, the polarimetric signature. The polarimetric studies lead to a technique for potentially improving the visibility of all azimuthally traveling waves in real-aperture radar (RAR) images and very long waves in synthetic-aperture radar (SAR) images. This technique utilizes linear polarization signatures to maximize the instrument sensitivity to azimuthally traveling waves. Wave tilts create a modulation of the cell polarization orientation which, in turn, modulates the backscatter. Critical to the success of this technique is that the ocean polarimetric signatures be sharply peaked (i.e., returns be highly polarized). The polarimetric contribution to the overall modulation transfer function is evaluated  相似文献   

15.
The Naval Research Laboratory WindSat polarimetric radiometer was launched on January 6, 2003 and is the first fully polarimetric radiometer to be flown in space. WindSat has three fully polarimetric channels at 10.7, 18.7, and 37.0 GHz and vertically and horizontally polarized channels at 6.8 and 23.8 GHz. A first-generation wind vector retrieval algorithm for the WindSat polarimetric radiometer is developed in this study. An atmospheric clearing algorithm is used to estimate the surface emissivity from the measured WindSat brightness temperature at each channel. A specular correction factor is introduced in the radiative transfer equation to account for excess reflected atmospheric brightness, compared to the specular assumption, as a function wind speed. An empirical geophysical model function relating the surface emissivity to the wind vector is derived using coincident QuikSCAT scatterometer wind vector measurements. The confidence in the derived harmonics for the polarimetric channels is high and should be considered suitable to validate analytical surface scattering models for polarized ocean surface emission. The performance of the retrieval algorithm is assessed with comparisons to Global Data Assimilation System (GDAS) wind vector outputs. The root mean square (RMS) uncertainty of the closest wind direction ambiguity is less than 20/spl deg/ for wind speeds greater than 6 m/s and less than 15/spl deg/ at 10 m/s and greater. The retrieval skill, the percentage of retrievals in which the first-rank solution is the closest to the GDAS reference, is 75% at 7 m/s and 85% or higher above 10 m/s. The wind speed is retrieved with an RMS uncertainty of 1.5 m/s.  相似文献   

16.
The WindSat instrument was launched on January 6, 2003 as part of a risk reduction effort to assess the potential of using spaceborne fully polarimetric radiometry to measure the marine wind vector. Microwave radiometry on the Special Sensor Microwave/Imager onboard the Defense Meteorological Satellite Program satellites has long provided wind speed measurements. Fully polarimetric radiometry offers the additional possibility of obtaining wind direction as well. By contrast, the QuikSCAT satellite uses active microwave measurements to estimate the wind vector from space. It represents the most comprehensive satellite dataset against which to compare WindSat measurements. In this paper, we systematically compare temporally and spatially coincident WindSat and QuikSCAT wind vector measurements against the design goals of the WindSat instrument, taking into consideration expected differences related to instrument precision and the spatial and temporal variability of the wind field.  相似文献   

17.
海洋风场是海洋与大气作用的重要参数之一。全极化微波辐射计是一种新型的微波遥感器。数字全极化微波辐射计采用多路数字相关技术,对水平和垂直极化信号进行相关处理,产生反演海面风场模型所需海面亮温Stokes矢量。详细介绍了数字全极化微波辐射计的系统设计方法,包括射频前端、中频段和数字相关器的设计。同时给出了系统内定标以及外定标方法。对数字全极化微波辐射计做了细致的理论分析和硬件实现设计。  相似文献   

18.
Snow accumulation in remote regions, such as Greenland and Antarctica, is a key factor for estimating the Earth's ice mass balance. In situ data are sparse; hence, they are useful to derive snow accumulation from remote sensing observations, such as microwave thermal emission and radar brightness. These data are usually interpreted using electromagnetic models in which volume scattering is the dominant mechanism. The main limitation of this approach is that microwave brightness is not well related to backscatter if the ice sheet is layered. Because larger grain size and thicker annual layers both increase radar image brightness, with the first corresponding to lower accumulation rate and the second to higher accumulation rate, models of radar brightness alone cannot accurately reflect accumulation. Consideration of correlation measurements can also resolve this ambiguity. We introduce an interferometric ice scattering model that relates the interferometric synthetic aperture radar correlation and radar brightness to both ice grain size and hoar layer spacing in the dry-snow zone of Greenland. We use this model and the European Remote Sensing satellite radar observations to derive several parameters related to snow accumulation rates in a small area in the dry-snow zone. These parameters show agreement with four in situ core accumulation rate measurements in this area, whereas models using only radar brightness data do not match the observed variation in accumulation rates  相似文献   

19.
The third Stokes parameter of ocean surface brightness temperatures measured by the WindSat instrument is sensitive to the rotation angle between the polarization vectors at the ocean surface and the instrument. This rotation angle depends on the spacecraft attitude (roll, pitch, yaw) as well as the Faraday rotation of the electromagnetic radiation passing through the Earth's ionosphere. Analyzing the WindSat antenna temperatures, we find biases in the third Stokes parameter as function of the along-scan position of up to 1.5 K in all feedhorns. This points to a misspecification of the reported spacecraft attitude. A single attitude correction of -0.16/spl deg/ roll and 0.18/spl deg/ pitch for the whole instrument eliminates all the biases. We also study the effect of Faraday rotation at 10.7 GHz on the accuracy of the third Stokes parameter and the sea surface wind direction retrieval and demonstrate how this error can be corrected using values from the International Reference Ionosphere for the total electron content when computing Faraday rotation.  相似文献   

20.
Presents the first experimental evidence that the polarimetric brightness temperatures of sea surfaces are sensitive to ocean wind direction in the incidence angle range of 30 to 50°. The experimental data were collected by a K-band (19.35 GHz) polarimetric wind radiometer (WINDRAD) mounted on the NASA DC-8 aircraft. A set of aircraft radiometer flights was successfully completed in November 1993. The authors performed circle flights over National Data Buoy Center (NDBC) moored buoys deployed off the northern California coast, which provided ocean wind measurements. The results indicate that passive polarimetric radiometry has a strong potential for global ocean wind speed and direction measurements from space  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号