首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Gas diffusion cathodes with Ni alloy and Ni catalysts manufactured by chemical deposition were tested for H2 production in a microbial electrolysis cell (MEC). In a continuous flow MEC, multi-component cathodes containing Ni, Mo, Cr, and Fe, at a total catalyst load of 1 mg cm−2 on carbon support demonstrated stable H2 production at rates of with only 5% methane in the gas stream. Furthermore, a Ni-only gas diffusion cathode, with a Ni load of 0.6 mg cm−2, demonstrated a H2 production rate of . Overall, H2 production was found to be proportional to the Ni load implying that inexpensive gas diffusion cathodes prepared by chemical deposition of Ni can be successfully used for continuous production of H2 in a MEC.  相似文献   

9.
10.
11.
12.
13.
14.
Photocatalytic hydrogen evolution over CuCrO2   总被引:1,自引:0,他引:1  
S. Saadi  A. Bouguelia  M. Trari   《Solar Energy》2006,80(3):272-280
We have been studying the technical feasibility of a photochemical H2 evolution based on a dispersion of CuCrO2 powder in aqueous electrolytes containing various reducing agents (S2−, and ). The title oxide combines a fair resistance to corrosion with an optimal band gap Eg of 1.32 eV. The intercalation of a small amount of oxygen should be accompanied by a partial oxidation of Cu+ into Cu2+ implying a p-type semiconductivity. The S2− oxidation inhibits the photocorrosion and the H2 evolution increases parallel to polysulfides formation. Most of H2 is produced when p-CuCrO2 is connected to n-Cu2O formed in situ. H2 liberation proceeds mostly on CuCrO2 while the oxidation of S2− takes place over Cu2O surface and the hetero system Cu2O/CuCrO2 is optimized with respect to some physical parameters. The photoactivity is dependent on preparation conditions and lowering the synthesis temperature through nitrate route leads to an increase in specific surface area Ssp. The photoelectrochemical H2 production is a multistep process where the rate determining step is the arrival of electrons at the interface because of their low mobility. Prolonged irradiation (>80 min) leads to a pronounced decrease of the photoactivity; the tendency toward saturation is due to the undesired back reduction of polysulfides in a closed system and to their strong absorption in the visible region (λmax = 520 nm).  相似文献   

15.
16.
The reaction of ground-state NH with H2 has been studied in a high-temperature photochemistry (HTP) reactor. The NH(X3Σ) radicals were generated by the 2-photon 193 nm photolysis of NH3, following the decay of the originally produced NH(A3Π) radicals. Laser-induced fluorescence on the transition at 336 nm was used to monitor the progress of the reaction. We obtained , with ±2σ precision limits varying from 12 to 33% and corresponding accuracy levels from 23 to 39%. This result is in excellent agreement with that of Rohrig and Wagner [Proc. Combust. Inst. 25 (1994) 975] and the data sets can be combined to yield . Starting with this agreement, it is argued that their rate coefficients for NH + CO2 could not be significantly in error [Proc. Combust. Inst. 25 (1994) 975]. This, combined with models of several combustion systems, indicates that HNO + CO cannot be the products, contrary to their suggestion [Proc. Combust. Inst. 25 (1994) 975]. Ab initio calculations have been performed which confirm this conclusion by showing the barriers leading to these products to be too high compared to the measured activation energies. The calculations indicate the likelihood of formation of adducts, of low stability. These then may undergo further reactions. The NH + H2O reaction is briefly discussed and it is similarly argued that HNO + H2 cannot be the products, as had been previously suggested.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号