首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
Dual function inhibitors for methane hydrate   总被引:2,自引:0,他引:2  
The performance of five imidazolium-based ionic liquids as a new class of gas hydrate inhibitors has been investigated. Their effects on the equilibrium hydrate dissociation curve in a pressure range of 30-110 bar and the induction time of hydrate formation at 114 bar and a high degree of supercooling, i.e., about 25 °C, are measured in a high-pressure micro differential scanning calorimeter. It is found that these ionic liquids, due to their strong electrostatic charges and hydrogen bond with water, could shift the equilibrium hydrate dissociation/stability curve to a lower temperature and, at the same time, retard the hydrate formation by slowing down the hydrate nucleation rate, thus are able to act as both thermodynamic and kinetic inhibitors. This dual function is expected to make this type of inhibitors perform more effectively than the existing inhibitors.  相似文献   

2.
The effect of 2-butoxyethanol as an additive on simple gas hydrate formation in the presence of kinetic hydrate inhibitors such as modified starch, polyvinylcaprolactam, and Gaffix VC-713 under various conditions in a flow mini-loop apparatus has been studied. A laboratory flow mini-loop apparatus has been designed and manufactured to measure the induction time of simple gas hydrate formation. Hydrate formers (such as C1, C2, C3, i-C4, and CO2) are contacted with water containing dissolved inhibitor in the presence of 2-butoxyethanol as an additive at desired temperature and pressure. The effect of 2-butoxyethanol on the induction time during gas hydrate formation was investigated in the presence and absence of modified starch, polyvinylcaprolactam, and Gaffix VC-713 as kinetic inhibitors. Results show that the induction time is prolonged in the presence of Gaffix VC-713 compared to polyvinylcaprolactam and modified starch as inhibitors. Moreover, the induction time in the presence of 2-butoxyethanol is greater than in the absence of this additive for simple gas hydrate formation. As a result, the performance of kinetic hydrate inhibitors was enhanced in the presence of 2-butoxyethanol for natural gas components during gas hydrate formation.  相似文献   

3.
The kinetic and thermodynamic effects of three typical low‐dosage imidazolium‐based ionic liquids (ILs) on methane hydrate formation and dissociation were investigated, considering the anion nature and subcooling and/or overpressure driving forces. Isochoric hydrate formation and dissociation data were obtained by the modified slow step‐heating method. ILs proved to have a dual effect on both formation and dissociation of methane hydrate including thermodynamic and kinetic inhibition. Kinetic modeling of methane hydrate inhibition by low‐dosage ILs was performed. Kinetic analysis showed that IL inhibitors mainly cause a delay in the nucleation or hydrate growth step. The related inhibition mechanism was resolved regarding the ionic nature and electrostatic interactions of ILs with water molecules. Two binomial exponential kinetic relations were derived and used for simple methane hydrate formation in the presence of ILs as kinetic hydrate inhibitors. The proposed relations can serve for a quick estimation of the nature, extent, strength, and effectiveness of ILs on various gas hydrates.  相似文献   

4.
Double gas hydrate formation in the presence or absence of kinetic inhibitors in a flow mini‐loop apparatus was investigated. For the prediction of the gas consumption rate during hydrate formation in this system, the rate equation based on the Kashchiev and Firoozabadi model for simple gas hydrate formation in a batch system was developed for double gas hydrate formation in a flow mini‐loop apparatus. To complete the theoretical evaluation of gas hydrate formation through the mini‐loop apparatus in the presence or absence of kinetic hydrate inhibitors (KHI), a laboratory flow mini‐loop apparatus was set up to measure the induction time for hydrate formation and the uptake rate when a gaseous mixture (such as 75 % C1/25 % C3, 25 % C1/75 % C3, 75 % C1/25 % i‐C4, and 25 % C1/75 % i‐C4) is contacted with water containing or not containing dissolved inhibitor under suitable temperature and pressure conditions. In each experiment, a water blend saturated with gas mixture was circulated up to the required pressure. The pressure was maintained at a constant value during the experimental runs by means of a required gas mixture make‐up. The effect of pressure on gas consumption during hydrate formation was investigated in the presence or absence of polyvinylpyrrolidone (PVP) and L ‐tyrosine as kinetic inhibitors at various concentrations. A good agreement was found between the predicted and experimental data in the presence or absence of KHI. The total average absolute deviation percents between the experimental and predicted values of gas consumption were found to be 16.4 and 17.5 % for the double gas hydrate formation in the presence or absence of the kinetic inhibitors, respectively.  相似文献   

5.
The main objective of the present work is experimental investigation of double gas hydrate formation with or without presence of modified starch as kinetic inhibitors in a flow mini‐loop apparatus. To this object, a laboratory flow mini‐loop apparatus was set up to measure the induction time for hydrate formation and the rate uptake when a gaseous mixture (such as 75% C1–25% C3, 25% C1–75% C3, 75% C1–25% i‐C4 and 25% C1–75% i‐C4) is contacted with water containing or not containing dissolved inhibitor under suitable temperature and pressure conditions. In each experiment, water blend saturated with gas mixture is circulated up to a required pressure. Pressure is maintained at a constant value during experimental runs by means of required gas mixture make‐up. The effect of pressure on gas consumption during hydrate formation is investigated with or without presence of polyvinylpyrrolidone and modified starch as kinetic inhibitors at various concentrations. Our results were shown that the modified starch can be applied as inhibitors in prevention of double gas hydrate formation in mini‐loop apparatus. © 2011 Canadian Society for Chemical Engineering  相似文献   

6.
气体水合物抑制剂的研制与性能评价   总被引:1,自引:0,他引:1  
针对海洋深水钻井过程中气体水合物的形成严重影响钻井作业的顺利进行等问题,室内经过大量的优选实验,采用甲基丙烯酸乙酯和N-乙烯基吡咯烷酮作为单体,并对单体比例、引发剂、反应温度及反应时间等综合因素进行分析,研制出低剂量气体水合物抑制剂HLA。通过四氢呋喃(THF)测试法和水合物生成模拟实验装置评价其效果,实验结果表明:盐类气体水合物抑制剂能使形成气体水合物的温度和压力条件得到改变,此外还可以有效的抑制气体水合物的形成;低剂量气体水合物抑制剂HLA能使水合物的形成速率得到有效降低,使形成水合物晶核的诱导时间得到一定的延长,使晶体的聚集过程得到一定的改变,但并不能从实际上改变气体水合物形成的相平衡。  相似文献   

7.
甲烷水合物在纯水和抑制剂体系中的生成动力学   总被引:2,自引:0,他引:2       下载免费PDF全文
Kinetic data of methane hydrate formation in the presence of pure water,brines with single salt and mixed salts,and aqueous solutions of ethylene glycol(EG) and salt EG were measured.A new kinetic model of hydrate formation for the methane water systems was developed based on a four-step formation mechanism and reaction kinetic approach.The proposed kinetic model predicts the kinetic behavior of methane hydrate formation in pure water with good accuracy.The feasibility of extending the kenetic model of salt(s) and EG containing systems was explored.  相似文献   

8.
The inhibition characteristics of kinetic hydrate inhibitors were experimentally investigated by utilization of the ultrasonic testing technique. PVCap (poly(vinylcaprolactam)) and VP/BA (vinyl pyrrolidone/butyl acrylate) were chosen as two typical kinetic inhibitors. Results of the tests demonstrate two kinds of inhibition mechanisms of kinetic hydrate inhibitors, i.e., nucleation inhibition and growth inhibition. PVCap polymer is strong to retard catastrophic growth of hydrate formation, while VP/BA dominantly prevents hydrate nucleation. The synergism of glycol ether compounds on the performance of PVCap was also tested. It was found that glycol ether compounds noticeably prolong the nucleation time, and extend the delay of catastrophic growth significantly.  相似文献   

9.
Determining gas hydrate kinetic inhibitor effectiveness using emulsions   总被引:2,自引:0,他引:2  
In this study we measure the effect of hydrate kinetic inhibition in emulsions. Because hydrate nucleation is stochastic, many experiments normally are needed to obtain accurate analysis of the effectiveness of kinetic inhibitors. Using differential scanning calorimetry (DSC), we show how emulsions can reduce the number of kinetic samples needed to obtain a statistical analysis of the effectiveness of polyvinylcaprolactam, PVCap, a common kinetic inhibitor. PVCap is shown to delay the average hydrate nucleation time and also causes hydrate nucleation to become more stochastic. This novel method uses less material and experimental time compared to traditional methods used to test kinetic inhibitors.  相似文献   

10.
Clarifying the interaction effect between hydrate and wax is of great significance to guarantee operation safety in deep water petroleum fields. Experiments in a high‐pressure hydrate slurry rheological measurement system were carried out to investigate hydrate formation and slurry viscosity in the presence of wax crystals. Results indicate that the presence of wax crystals can prolong hydrate nucleation induction time, and its influence on hydrate growth depends on multiple factors. Higher stirring rate can obviously promote hydrate growth rate, while its influence on hydrate nucleation induction time is complicated. Higher initial pressure will promote hydrate formation. Gas hydrate slurry shows a shear‐thinning behavior, and slurry viscosity increases with the increase of wax content and initial pressure. A semiempirical viscosity model showing a well‐fitting is established for hydrate slurry with wax crystals by considering the aggregation and breakage of hydrate particles, wax crystals, and water droplets. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3502–3518, 2018  相似文献   

11.
The performance of polyvinylpyrrolidone (PVP) and polyvinylcaprolactam (PVCap) as kinetic hydrate inhibitors (KHIs) in the presence of NaCl and n‐heptane was evaluated by using a high‐pressure cell in conjunction with a rotational rheometer. The addition of KHIs was found to prolong the induction time and decrease the hydrate growth. On the other hand, hydrates agglomerated more readily. PVP performed more efficiently than PVCap in delaying nucleation time but PVCap controlled the growth and delayed agglomeration more effectively. Addition of n‐heptane to the system increased induction time and reduced growth. Unexpectedly, addition of KHIs in the presence of n‐heptane decreased nucleation time but controlled growth effectively. Meanwhile, hydrate particles remained dispersed more efficiently and no agglomeration was detected. These observations confirm that high‐pressure rheology is an additional laboratory assessment tool to evaluate KHIs under ocean field conditions. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2654–2659, 2014  相似文献   

12.
Gas hydrates have drawn global attentions in the past decades as potential energy resources. It should be noted that there are a variety of possible applications of hydrate-based technologies, including natural gas storage, gas transportation, separation of gas mixture, and seawater desalination. These applications have been critically challenged by insufficient understanding of hydrate formation kinetics. In this work, the literatures on growth kinetic behaviors of hydrate formation from water-hydrocarbon were systematically reviewed. The hydrate crystal growth, hydrate film growth and macroscopic hydrate formation in water system were reviewed, respectively. Firstly, the hydrate crystal growth was analyzed with respect to different positions, such as gas/liquid interface, liquid–liquid interface and gas–liquid–liquid system. Secondly, experimental and modeling studies on the growth of hydrate film at the interfaces between guest phase and water phase were categorized into two groups of lateral growth and thickening growth considering the differences in growth rates. Thirdly, we summarized the promoters and inhibitors reported (biological or chemical, liquid or solid and hydrophobic or hydrophilic) and analyzed the mechanisms affecting hydrate formation in bulk water system. Knowledge gaps and suggestions for further studies on hydrate formation kinetic behaviors are presented.  相似文献   

13.
Gas hydrate formation and decomposition on water droplets using an 89.4% methane—10.6% ethane mixture, and a 90.1% methane—9.9% propane mixture were carried out in a new apparatus suitable for morphology studies. As expected the induction time was found to be much shorter when the water had hydrate memory. All droplets nucleated simultaneously and the droplet size and shape had no noticeable effect on induction time and macroscopic crystal growth morphology for hydrates from the methane-ethane mixture. However, the surface of the hydrate crystals from methane-propane had a “hairy-like” appearance which changed to a smooth surface over time. Moreover, the smaller droplets during hydrate reformation showed an extensive hydrate growth and looked like snow-flakes. Sequential pictures generated by time-lapse videos showed that the time required for hydrate to cover the water droplet surface ranged from 10 to 23 s and was shorter when there was gas-phase agitation (mixing). The growth is postulated to occur in two stages. The first stage lasts about 10-23 s and growth takes place laterally. Growth takes place at the hydrate/gas and the hydrate/water interfaces during the second stage. The implication of the findings for process design of hydrate formation vessels is also discussed.  相似文献   

14.
The objective of this work is the prediction of induction time (ti) for simple gas hydrate formation in the presence or absence of kinetic hydrate inhibitors at various conditions based on the Kashchiev and Firoozabadi model in a flow mini‐loop apparatus. For this purpose, the ti model is developed for simple gas hydrate formation in batch system for natural gas components during hydrate formation in a flow mini‐loop apparatus. A laboratory flow mini‐loop apparatus is designed and built up to measure the ti for simple gas hydrate formation when a hydrate former (such as C1, C3, CO2 and i‐C4) is contacted with water in the absence or presence of dissolved inhibitor, such as poly vinylpyrrolidone, PVCap and L ‐tyrosine. In each experiment, a water blend saturated with pure gas is circulated up to a required pressure. Pressure is maintained at a constant value during experimental runs by means of the required gas make‐up. The average absolute deviation (AAD) of the predicted ti values from the corresponding experimental data are found to be about 11% and 9.4% for gas hydrate formation ti in the presence or absence of kinetic hydrate inhibitors, respectively. © 2012 Canadian Society for Chemical Engineering  相似文献   

15.
Dissociation of small methane hydrate samples formed from water droplets of size 0.25-2.5 mm has been investigated below the ice melting point in the temperature range of 240-273 K, where the self-preservation effect is observed for bulk hydrates. The experiments included optical microscopy observations combined with P-T measurements of the dissociation conditions for the methane hydrates. For the first time, the formation of supercooled liquid water during the hydrate dissociation was reliably detected in the temperature range of 253-273 K. The formation of the liquid phase was visually observed. The induction time of the ice nucleation for the metastable liquid water depended from the dissociation temperature and a size of water droplets formed during the hydrate dissociation. It was found that in the temperature range of 253-273 K values of the dissociation pressure for the small hydrate samples fall on the extension of the water-hydrate-gas equilibrium curve into the metastable region where supercooled water exist. The average molar enthalpy of 51.7 kJ/mol for the dissociation of the small methane hydrate samples in the temperature range of 253-273 K was calculated using Clausius-Clapeyron equation. This value agrees with the enthalpy of dissociation of bulk methane hydrates into water and gas at temperatures above 273 K.  相似文献   

16.
在500mL的高压反应釜中,实验研究了乙二醇(MEG)与动力学抑制剂PEO-co-VCap-1在细砂存在下对甲烷水合物再生成过程的协同抑制作用。实验过程中,控制MEG的质量分数范围为0~5%,PEO-co-VCap-1的质量分数范围为0~0.5%,形成4种的抑制剂配伍组合,进行了12组实验。实验结果表明,PEO-co-VCap-1在单独作用时,可以延缓水合物的成核阶段,但可能导致水合物在生长阶段短时间内大量生成的灾难性生长现象。其与MEG复配可在延缓水合物成核的同时,有效减少灾难性增长现象的出现,降低油气管输的堵管风险。当MEG质量分数为5%、PEO-co-VCap-1质量分数为0.5%时,协同抑制效应极为明显,可将甲烷水合物诱导期延长至2800min以上。MEG同PEO-co-VCap-1的协同抑制效果与提高温度的抑制作用相似。这一发现表明,如果在使用PEO-co-VCap-1的同时使用MEG等良好的增效剂,有助于动力学抑制剂用于更高的过冷度环境,为高效解决高过冷条件下油气生产中的水合物防控问题提供新的可能。  相似文献   

17.
万丽  梁德青 《化工学报》2022,73(2):894-903
目前用于天然气水合物防治的工业动力学抑制剂主要是水溶性聚合物,如聚乙烯基吡咯烷酮(PVP)、聚乙烯基己内酰胺(PVCap)、Gaffix VC-713等,然而生物降解性低限制了其工业应用。因此,开发环保型的抑制剂具有重要意义。实验采用易生物降解的海藻酸钠与PVCap的单体接枝共聚,合成一类新型水合物动力学抑制剂NaAlg-g-PVCap,结合最大过冷度及耗气量评价了新型抑制剂在水合物生成过程中的抑制性能,并通过BOD5/COD值评价了新型抑制剂的生物降解性。结果表明低剂量[0.25%(质量)]下NaAlg-g-PVCap的最大耐受过冷度优于PVP K90,但低于PVCap,且随着添加剂量增大而微弱降低;在其最大耐受过冷度以下(ΔTsub=5℃),NaAlg-g-PVCap表现出较好的水合物成核和生长抑制作用,其体系水合物初始生长速率值约只为纯水体系的 1/10,也远高于PVP体系,且总耗气量相比纯水及PVP体系减少了60%以上,与PVCap体系接近,但随着过冷度增大,NaAlg-g-PVCap成核抑制作用下降明显,这可能是共聚物中两部分共同作用的结果;同时,NaAlg-g-PVCap相比PVCap其生物降解性提高了26%, 倾向于易降解。说明PVCap与NaAlg共聚后优化了整体的性能,表现出较好的水合物抑制性能和生物降解性。  相似文献   

18.
As a new form of energy with substantial potential, natural gas hydrate will play a crucial strategic role in the future due to its vast reserves and broad industrial application prospects. To better comprehend the nucleation and growth mechanism of clathrate hydrate, an enhanced thermodynamic model was proposed based on the wall roughness model and nucleation theory. In general, we discovered that the nucleation of hydrate on a smooth wall surface conforms to the conclusion of classical nucleation theory. However, curvature and surface roughness are frequently characterized by hydrophilicity's inhibition of hydrate and hydrophobicity's enhancement. The specific situation is more complex and requires specific analysis and discussion. Nonetheless, this also explains the uneven distribution of hydrate nucleation induction time. Our research reveals a fundamental method for designing or manipulating the heterogeneous nucleation of hydrates. We foresee promising applications in hydrate-related technologies based on the fractal structure of the substrate's surface.  相似文献   

19.
Current models for hydrate formation in subsea pipelines require an arbitrary assignment of a subcooling criterion for nucleation. In reality hydrate nucleation times depend on both the degree of subcooling and the amount of time the fluid has been subcooled. In this work, differential scanning calorimetry was applied to study hydrate nucleation for gas phase hydrate formers. Temperature ramping and isothermal approaches were combined to explore the probability of hydrate nucleation for both methane and xenon. A system-dependent subcooling of around 30 K was necessary for hydrate nucleation from both guest molecules. In both systems, hydrate nucleation occurred over a narrow temperature range (2-3 K). The system pressure had a large effect on the hydrate nucleation temperature but the ice nucleation temperature was not affected over the range of pressures investigated (3-20 MPa). Cooling rates in the range of (0.5-3 K/min) did not have any statistically significant effect on the nucleation temperature for each pressure investigated. In the isothermal experiments, the time required for nucleation decreased with increased subcooling.  相似文献   

20.
为了探明蜡晶析出对水合物生成相平衡特性及成核特性的影响,本文选用2#工业白油与60#昆仑石蜡的混合溶液来模拟含蜡体系,利用高压可视化搅拌釜开展含蜡体系水合物生成实验,结合水合物生成过程中的可视化图像,研究不同蜡晶浓度对水合物生成相平衡曲线、水合物成核诱导时间、诱导时间变化率的影响规律及蜡晶析出对水合物生成机理的影响。结果表明:①随着蜡晶浓度的增加,水合物生成相平衡条件逐渐降低,相平衡曲线较无蜡体系向右偏移,且蜡晶浓度越大,偏移趋势越明显,在温度281.5K时,3.5%(质量分数)的蜡含量比无蜡体系的相平衡压力降低6.5%;②通过分析不同蜡晶浓度对水合物成核诱导时间的影响发现,蜡晶析出加快了水合物结晶,缩短了水合物成核诱导时间,且蜡晶浓度越大,诱导时间缩短越明显;③通过探究不同蜡晶浓度对水合物成核诱导能力的影响发现,随着蜡晶浓度的增加,蜡晶析出对水合物诱导成核的促进能力总体呈现先增大后减小的趋势,即蜡晶对水合物的促进能力不是无限增大的,会随蜡晶浓度的增加逐渐减弱;④通过分析蜡晶析出对水合物生成速率及生成位置的影响发现,当体系达到水合物生成条件时,反应釜中心部分的水合物会先于气液表面及釜壁生成。本文研究成果有助于深海油气开采的应用发展,同时为更好研究蜡晶与水合物耦合特性提供可靠的pVT数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号