首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Studies of key technologies for large area CdTe thin film solar cells   总被引:1,自引:0,他引:1  
The structure and main manufacturing technologies of CdTe film solar cells of large area are reviewed. Among the technologies, some have been developed for application in a pilot manufacturing line. The high resistant SnO2 (HRT) thin films have been fabricated by PECVD. The effects of annealing on the structure and properties have been studied. A surface etching process of CdTe in low temperature and lower concentration of nitric acid has been developed. The Cd1 − xZnxTe ternary compound films have been studied. In order to improve the back contact layer, Cd0.4Zn0.6Te layer with 1.8 eV band gap as a substitute for ZnTe layer is introduced in CdTe cells. The effects of the technologies on performance of CdTe cells and feasibility of application in the modules are discussed.  相似文献   

2.
Two types of superstrate glass/ITO/CdS/CdTe PV structures were prepared by high vacuum evaporation technique with (i) activation of CdS layer and CdS/CdTe bi-layer structure step-by-step and (ii) activation of CdS/CdTe bi-layer structure. The activation was performed by annealing the structures with CdCl2 in air at 400 °C for 15 min. Main conditions for CdS and CdTe thin films deposition and following treatment were selected from the literature data with the purpose to prepare and compare complete CdTe solar cells with standard p + CuxTe back contact and conductive polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (PEDOT:PSS) back contact. Obtained layers and structures were characterized using the XRD, SEM and I-V methods. Both the methods of activation treatment give comparable results from the point of view PV properties of complete solar cells. It was found that highly conductive PEDOT:PSS intermediate layer can significantly improve the back contact characteristics of CdTe. However these hybrid structures need to be further optimized to compete successfully with conventional inorganic back contacts in complete CdTe solar cells.  相似文献   

3.
Dependences of the open-circuit voltage, short-circuit current, fill factor, and efficiency of a CdS/CdTe solar cell on the resistivity and thickness of the p-CdTe absorber layer, the noncompensated acceptor concentration Na-Nd, and carrier lifetime τ in CdTe, are investigated, and optimization of these parameters in order to improve the solar cell efficiency is performed. It has been shown that the observed low efficiency of CdS/CdTe solar cells is caused by the too short electron lifetime in the range of 10− 10-10− 9 s and too thin (3-5 µm) CdTe layer currently used for fabrication of CdTe/CdS solar cells. To achieve an efficiency of 28-30%, the resistivity and thickness of the CdTe absorber layer, the noncompensated acceptor concentration, and carrier lifetime should be ∼ 0.1 Ω·cm, ≥ 20-30 µm, ≥ 1016 cm− 3, and ≥ 10− 6 s, respectively.  相似文献   

4.
Pulsed laser deposition (PLD) is one of the promising techniques for depositing cadmium telluride (CdTe) thin films. It has been reported that PLD CdTe thin films were almost deposited at the lower substrate temperatures (<300 °C) under vacuum conditions. However, the poor crystallinity of CdTe films prepared in this way renders them not conducive to the preparation of high-efficiency CdTe solar cells. To obtain high-efficiency solar cell devices, better crystallinity and more suitable grain size are needed, which requires the CdTe layer to be deposited by PLD at high substrate temperatures (>400 °C). In this paper, CdTe layers were deposited by PLD (KrF, λ = 248 nm, 10 Hz) at different higher substrate temperatures (Ts). Excellent performance of CdTe films was achieved at higher substrate temperatures (400 °C, 550 °C) under an atmosphere of Ar mixed with O2 (1.2 Torr). X-ray diffraction analysis confirmed the formation of CdTe cubic phase with a strong (1 0 0) preferential orientation at all substrates temperatures on 60 mJ laser energy. The optical properties of CdTe were investigated, and the band gaps of CdTe films were 1.51 eV and 1.49 eV at substrate temperatures of 400 °C and 550 °C, respectively. Scanning electron microscopy (SEM) showed an average grain size of 0.3–0.6 μm. Thus, under these conditions of the atmosphere of Ar + O2 (15 Torr) and at the relatively high Ts (500 °C), an thin-film (FTO/PLD-CdS (100 nm)/PLD-CdTe (~1.5 μm)/HgTe: Cu/Ag) solar cell with an efficiency of 6.68% was fabricated.  相似文献   

5.
Ultra-thin photovoltaic (PV) devices were produced by atmospheric pressure metal organic chemical vapour deposition (AP-MOCVD) incorporating a highly absorbing intermediate sulphurised FeSx layer into a CdS/CdTe structure. X-ray diffraction (XRD) confirmed a transitional phase change to pyrite FeS2 after post growth sulphur (S) annealing of the FeSx layer between 400 °C and 500 °C. Devices using a superstrate configuration incorporating a sulphurised or non-sulphurised FeSx layer were compared to p-n devices with only a CdS/CdTe structure. Devices with sulphurised FeSx layers performed least efficiently, even though pyrite fractions were present. Rutherford back scattering (RBS) confirmed deterioration of the CdS/FeSx interface due to S inter-diffusion during the annealing process.  相似文献   

6.
The electronic interface properties of Cu2 − xTe with CdTe have been investigated using in-situ photoelectron spectroscopy (XPS, UPS) in comparison to CdTe/Cu and CdTe/Te interfaces. A band bending towards the Fermi level as a result of the p-doping can be seen in the CdTe by depositing Cu2 − xTe. Different Cu2 − xTe films were prepared by varying the deposition parameters such as substrate temperature and deposition rate of the Cu and Te sources. For all Cu2 − xTe/CdTe interfaces a valence band offset of 0.8 ± 0.05 eV has been found.  相似文献   

7.
CIGS thin-film solar cells on steel substrates   总被引:1,自引:0,他引:1  
Steel foil is an attractive candidate for use as a flexible substrate material for Cu(Inx,Ga1 − x)Se2 solar cells (CIGS). It is stable at the high temperatures involved during CIGS processing and is also commercially available. Stainless chromium (Cr) steel is more expensive than Cr-free steel sheets, but the latter are not stable against corrosion. We processed CIGS solar cells on both types of substrates. The main problem arising here is the diffusion of detrimental elements from the substrate into the CIGS absorber layer. The diffusion of iron (Fe) and other substrate elements into the CIGS layer was investigated by Secondary Ion Mass Spectrometry (SIMS). The influence of the impurities on the solar cell parameters was determined by current voltage (JV) and external quantum efficiency (EQE) measurements. A direct correlation between the Fe content in the CIGS layer and the solar cell efficiency was found. The diffusion of Fe could be strongly reduced by a diffusion barrier layer. Thus we could process CIGS solar cells with a conversion efficiency of 12.8% even on Cr-free steel substrate.  相似文献   

8.
Thin-film solar cells based on Cu2ZnSnS4 (CZTS) absorbers were fabricated successfully by solid-state reaction in H2S atmosphere of electrodeposited Cu-Zn-Sn precursors. These ternary alloys were deposited in one step from a cyanide-free alkaline electrolyte containing Cu(II), Zn(II) and Sn(IV) metal salts on Mo-coated glass substrates. The solar cell was completed by a chemical bath-deposited CdS buffer layer and a sputtered i-ZnO/ZnO:Al bilayer. The best solar cell performance was obtained with Cu-poor samples. A total area (0.5 cm2) efficiency of 3.4% is achieved (Voc = 563 mV, jsc = 14.8 mA/cm2, FF = 41%) with a maximum external quantum efficiency (EQE) of 80%. The estimated band-gap energy from the external quantum efficiency (EQE) measurements is about 1.54 eV. Electron backscatter-diffraction maps of cross-section samples revealed CZTS grain sizes of up to 10 µm. Elemental distribution maps of the CZTS absorber show Zn-rich precipitates, probably ZnS, and a Zn-poor region, presumably Cu2SnS3, close to the interface Mo/CZTS.  相似文献   

9.
H. Zhao 《Thin solid films》2009,517(7):2365-7155
The effect of introducing impurities in CdTe, namely antimony (Sb) and oxygen (O), on the net carrier concentration in CdS/CdTe solar cells and on their open-circuit voltage (VOC) has been investigated. Oxygen was introduced in the CdTe films during the deposition of this layer by the close-spaced sublimation process. The total pressure was held constant at 1330 Pa (N2 and O2). The amount of oxygen was varied by varying its partial pressure. Antimony was introduced into CdTe using a post-deposition diffusion process. Following the deposition of CdTe a thin film (a few nm) of Sb was deposited onto the CdTe surface and subsequently heat-treated to cause in-diffusion of Sb. The temperature and time during the diffusion process were varied in the range of 300-525 °C and 20-160 min respectively. In both instances it was possible to vary (increase) the doping concentration in CdTe. The increase in doping was accompanied by an increase in VOC. However, in all instances the doping in CdTe reached a maximum value, beyond which further increases were not possible leading to saturation in VOC. The highest VOC measured was similar to state-of-the-art values in the range of 800-830 mV, and the highest doping concentration measured was in the 1016 cm− 3 range.  相似文献   

10.
The electronic properties of matched pairs of Cu(InxGa1 − x)Se2 (CIGS) solar cells, with and without normal sodium levels, were studied by junction capacitance methods including admittance spectroscopy, drive level capacitance profiling (DLCP) and transient photocapacitance spectroscopy (TPC). The capacitance profiling measurements revealed a large deep defect density in the vicinity of the barrier interface that was likely responsible for the lower performance of the reduced Na samples. The metastable properties of CIGS solar cells were also examined, and these revealed marked differences between the two types of samples. These results directly address the predictions of theoretical microscopic models that have been proposed to account for metastable effects in CIGS.  相似文献   

11.
CdS/CdTe thin film solar cells with an area of 1 cm2 were obtained and studied in detail. A ZnO buffer layer was deposited by reactive RF-sputtering on commercial ITO substrates. The CdS layer was grown on ZnO also by using RF-sputtering and CdTe thin film was deposited by conventional CSS technique. The chlorination of the solar cells is performed into Freon atmosphere at 400 °C. The CdTe thin film surface was chemically etched by using Br-Methanol solution. The back contact was deposited using RF-sputtering from a pure Cu and Mo targets. The procedure developed in this work led us to make systematically solar cells with good efficiency. However, the series resistance has a high value for an area of 1 cm2 (22 Ω cm2). In order to make more detailed study, the solar cell with an area of 1 cm2 was divided in a 3 × 3 matrix. A good homogeneity in cell properties is observed and the efficiency increases to more than 11%, fundamentally through decreasing series resistance.  相似文献   

12.
CuIn1 − xGaxSe2 (CIGS) solar cells show a good spectral response in a wide range of the solar spectrum and the bandgap of CIGS can be adjusted from 1.0 eV to 1.7 eV by increasing the gallium-to-indium ratio of the absorber. While the bandgaps of Ga-rich CIGS or CGS devices make them suitable for top or intermediate cells, the In rich CIGS or CIS devices are well suited to be used as bottom cells in tandem solar cells. The photocurrent can be adapted to the desired value for current matching in tandem cells by changing the composition of CIGS which influences the absorption characteristics. Therefore, CIGS layers with different [Ga]/[In + Ga] ratios were grown on Mo and ZnO:Al coated glass substrates. The grain size, composition of the layers, and morphology strongly depend on the Ga content. Layers with Ga rich composition exhibit smaller grain size and poor photovoltaic performance. The current densities of CIGS solar cells on ZnO:Al/glass varied from 29 mA cm− 2 to 13 mA cm− 2 depending on the Ga content, and 13.5% efficient cells were achieved using a low temperature process (450 °C). However, Ga-rich solar cells exhibit lower transmission than dye sensitized solar cells (DSC). Prospects of tandem solar cells combining a DSC with CIGS are presented.  相似文献   

13.
A baseline parameter set for electrical modelling of Cu(In,Ga)Se2 solar cells with compositionally graded absorber and CdS buffer layer is established. The cases with and without Fermi level pinning as well as with and without a surface defect layer are considered. Simulations with a defect layer are observed to give the best correspondence to measurements. Zn1 − xMgxO buffer layers are introduced and initial modelling of the light soaking behaviour is performed. Simulation results are compared with experimental data.  相似文献   

14.
This paper presents the quality of InxGa1 − xAs (0 < x < 0.2) layers grown on GaAs substrate with different miscut angle (2° and 15°) by metal organic chemical vapor deposition. The crystalline quality of InxGa1 − xAs layers was found to strongly depend on indium content and substrate misorientation. The In0.16Ga0.84As solar cells with PN structure were grown on a 2°- and 15°-off GaAs substrates. It was found that the photovoltaic performance of In0.16Ga0.84As solar cell grown on 2°-off GaAs substrate was better than that of In0.16Ga0.84As grown on a 15°-off GaAs substrate, because the InxGa1 − xAs films grown on 15°-off GaAs substrate shows a highly strain relaxation in active layer of solar cell, which causes the high dislocation density at the initial active layer/InxGa1 − xAs graded layer interface.  相似文献   

15.
B-doped hydrogenated amorphous silicon carbon (a-Si1−xCx:H) films have been prepared by hot-wire CVD (HWCVD) using SiH3CH3 as the carbon source gas. The optical bandgap energy and dark conductivity of the film are about 1.94 eV and 2 × 10− 9 S/cm, respectively. Using this film as a window layer, we have demonstrated the fabrication of solar cells having a structure of the textured SnO2(Asahi-U)/a-Si1−xCx:H(p)/a-Si1−xCx:H(buffer)/a-Si:H(i)/μc-Si:H(n)/Al. The conversion efficiency of the cell is found to be 7.0%.  相似文献   

16.
The electric properties of solar cells based on co-evaporated Cu(In,Ga)Se2 (CIGSe) thin film show a good tolerance regarding the absorber Cu content (y = [Cu]/([In] + [Ga])) for standard Ga concentration, i.e. x = [Ga] / ([In] + [Ga]) ~ 0.3. In the present contribution, we show that this tolerance is lost when the gallium content is increased. Wide bandgap CIGSe samples (x ~ 0.55) with a variation in y from 0.97 to 0.84 have been grown. The efficiency of the cells decreases from 12.6% to 6.5% for y = 0.97 and 0.84 respectively. For the lowest y, the efficiency is harmed because of a low short-circuit current density (Jsc), an increased voltage dependency in the current collection, which affects the fill factor (FF), and a decrease of the open-circuit voltage (Voc). For y = 0.97 and 0.84 respectively, the decrease of the activation energy (Ea) from 1.36 to 1.24 eV indicates a shift of the area of the dominant recombination from the space charge region towards the interface. There seems to be evidence that reducing the Cu-content in the CIGSe thin film will cause a decrease in the width of the space charge region. Solar cells based on Cu-rich CIGSe (1.03 < y < 1.09) have also been fabricated and characterized. A strong deterioration of their electrical properties is observed despite the KCN etch of the segregated Cu2 − xSe binary phases at the surface, suggesting the presence of residual Cu2 − xSe precipitates within the layer.  相似文献   

17.
Zinc cadmium sulfide (ZnxCd1 − xS) heterojunction partner layer prepared with chemical bath deposition (CBD) has exhibited better blue photon response and higher current densities due to its higher bandgap than that of conventional cadmium sulfide (CdS) layer for CuIn1 − xGaxS2 (CIGS2) solar cells. CIGS2/ZnxCd1 − xS devices have also shown higher open circuit voltage, Voc indicating improved junction properties. A conduction band offset has been observed by J-V curves at various temperatures indicating that still higher Voc can be obtained by optimizing the conduction band offset. This contribution discusses the effect of variation of parameters such as concentration of compounds, pH of solution and deposition time during CBD on device properties and composition and crystallinity of film. Efficiencies comparable to CIGS2/CdS devices have been achieved for CIGS2/ZnxCd1 − xS devices.  相似文献   

18.
The commonly used CdS/i-ZnO buffer system in Cu(In,Ga)Se2 (CIGS) thin-film solar cells was substituted by ZnS/(Zn,Mg)O. ZnS has a higher transmission in the short wavelength range due to the higher bandgap energy Eg = 3.7 eV compared to CdS with Eg = 2.4 eV. Unfortunately, in our experiments the resulting gain in short-circuit current density jSC as the result of reduced absorption losses in the blue wavelength region is mostly accompanied by a decrease in open-circuit voltage VOC of the devices with ZnS buffer. This contribution discusses possible explanations for the systematically lower open-circuit voltages of the devices with a ZnS buffer layer.The carrier collection properties of the devices with a ZnS buffer were investigated by electron beam induced current measurements in the junction configuration. The maximum of the collection probability for ZnS cells is located in the CIGS bulk and not near the buffer/CIGS interface like for solar cells with CdS buffer. Additionally, we observed a larger space charge width compared to devices with a CdS buffer. This finding concurs with the considerably lower capacitance values and also lower charge densities in ZnS-buffered devices, as determined by capacitance voltage measurements.Based on these findings, the main reason for the lower open-circuit voltages of our ZnS devices is that the charge densities are lower than for the CdS/i-ZnO cells.  相似文献   

19.
Cu diffusion from a ZnTe:Cu contact interface can increase the net acceptor concentration in the CdTe layer of a CdS/CdTe photovoltaic solar cell. This reduces the space-charge width (Wd) of the junction and enhances current collection and open-circuit voltage. Here we study the effect of Cu concentration in the CdTe layer on carrier lifetime (τ) using time-resolved photoluminescence measurements of ZnTe:Cu/Ti-contacted CdTe devices. Measurements show that if the ZnTe:Cu layer thickness remains constant and contact temperature is varied, τ increases significantly above its as-deposited value when the contacting temperature is in a range that has been shown to yield high-performance devices (~ 280° to ~ 320 °C). However, when the contacting temperature is maintained near an optimum value and the ZnTe:Cu thickness is varied, τ decreases with ZnTe:Cu thickness.  相似文献   

20.
F. Jacob  S. Gall  J. Kessler 《Thin solid films》2007,515(15):6028-6031
The present work studies the influence of the Ga content (x = Ga / (Ga + In)) in the absorber on the solar cell performance for devices using (PVD)In2S3-based buffers. Input to the hypothesis of the relative conduction band positions can be found in the evolution of the device parameters with x. For experiments with x between 0 and 0.5 devices using (PVD)In2S3-based buffers are compared to reference devices using (CBD)CdS. Both buffers give similar cell characteristics for narrow band gap absorbers, typically EgCIGSe < 1.1 eV. However, the parameters of the cells buffered with (PVD)In2S3 are degraded when the absorber gap is widened whereas (CBD)CdS reference devices are only slightly affected. Consequently, the solar cell efficiency is similar for both buffer layers at the lower x values and increases with x only in the case of (CBD)CdS. These evolutions are coherent with the existence of a conduction band cliff at the CIGSe/(PVD)In2S3 interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号