首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
何志芬  杨明  刘会东 《软件学报》2014,25(9):1967-1981
提出了多标记分类和标记相关性的联合学习(JMLLC),在JMLLC中,构建了基于类别标记变量的有向条件依赖网络,这样不仅使得标记分类器之间可以联合学习,从而增强各个标记分类器的学习效果,而且标记分类器和标记相关性可以联合学习,从而使得学习得到的标记相关性更为准确.通过采用两种不同的损失函数:logistic回归和最小二乘,分别提出了JMLLC-LR(JMLLC with logistic regression)和JMLLC-LS(JMLLC with least squares),并都拓展到再生核希尔伯特空间中.最后采用交替求解的方法求解JMLLC-LR和JMLLC-LS.在20个基准数据集上基于5种不同的评价准则的实验结果表明,JMLLC优于已提出的多标记学习算法.  相似文献   

2.
现有的多标记学习技术大多只考虑了相关性学习问题而忽略了数据因变换而引起的结构性质不一致问题,导致原始特征数据的结构性质因映射变换发生改变,从而影响了模型的分类性能。为了解决这一问题,提出了基于结构性质保持和相关性学习的多标记分类算法。首先,构造了线性映射函数以实现特征空间与标记空间的映射;然后借鉴图正则化思想,引入基于特征数据的结构性质保持策略以降低特征数据因线性变换引起的结构性质差异;最后,针对标记数据引入基于标记对的相关性学习策略进一步优化算法参数,以提高模型的分类性能。在不同规模的标准数据集上进行测试,结果表明所提算法与一些流行的多标记分类算法相比具有更优的分类性能,验证了所提算法的有效性。  相似文献   

3.
一种针对弱标记的直推式多标记分类方法   总被引:1,自引:1,他引:1  
多标记学习主要解决一个样本可以同时属于多个类别的问题,它广泛适用于图像场景分类、文本分类等任务.在传统的多标记学习中,分类器往往需要利用大量具有完整标记的训练样本才能获得较好的分类性能,然而,在很多现实应用中又往往只能获得少量标记不完整的训练样本.为了更好地利用这些弱标记训练样本,提出一种针对弱标记的直推式多标记分类方法,它可以通过标记误差加权来补全样本标记,同时也能更好地利用弱标记样本提高分类性能.实验结果表明,该方法在弱标记情况下的图像场景分类任务上具有较好的性能提高.  相似文献   

4.
在多标记学习中,发现与利用各标记之间的依赖关系能提高学习算法的性能。文中基于分类器链模型提出一种针对性的多标记分类算法。该算法首先量化标记间的依赖程度,并构建标记之间明确的树型依赖结构,从而可减弱分类器链算法中依赖关系的随机性,并将线性依赖关系泛化成树型依赖关系。为充分利用标记间的相互依赖关系,文中采用集成学习技术进一步学习并集成多个不同的标记树型依赖结构。实验结果表明,同分类器链等算法相比,该算法经过集成学习后有更好的分类性能,其能更有效地学习标记间的依赖关系。  相似文献   

5.
针对现有的大部分多示例多标记(MIML)算法都没有考虑如何更好地表示对象特征这一问题,将概率潜在语义分析(PLSA)模型和神经网络(NN)相结合,提出了基于主题模型的多示例多标记学习方法。算法通过概率潜在语义分析模型学习到所有训练样本的潜在主题分布,该过程是一个特征学习的过程,用于学习到更好的特征表达,用学习到的每个样本的潜在主题分布作为输入来训练神经网络。当给定一个测试样本时,学习测试样本的潜在主题分布,将学习到的潜在主题分布输入到训练好的神经网络中,从而得到测试样本的标记集合。与两种经典的基于分解策略的多示例多标记算法相比,实验结果表明提出的新方法在现实世界中的两种多示例多标记学习任务中具有更优越的性能。  相似文献   

6.
通过近邻样例类标记确定测试样例类标记的思想在多标记分类算法中取得了良好的效果。该类算法通过对训练集进行学习,建立训练样例类标记与其k个近邻样例中不同类标记样例个数的映射关系,然后用该映射关系预测测试样例的类标记。该类算法的不足是只考虑近邻样例中不同类别样例的个数与测试样例类标记的映射关系,忽略了近邻样例与测试样例的局部相关性。考虑训练样例类与近邻样例的局部相关性,建立起它们类别间的映射关系,预测测试样例类标记,提出ML-WKNN算法。实验表明,ML-WKNN能更好地处理多标记分类问题和自动图像标注问题。  相似文献   

7.
基于PLSA主题模型的多标记文本分类   总被引:1,自引:1,他引:0  
为解决多标记文本分类时文本标记关系不明确以及特征维数过大的问题,提出了基于概率隐语义分析(Probabilistic latent semantic analysis,PLSA)模型的多标记假设重用文本分类算法。该方法首先将训练样本通过PLSA模型映射到隐语义空间,以文本的主题分布表示一篇文本,在去噪的同时可以大大降低数据维度。在此基础上利用多标记假设重用算法(Multi label algorithm of hypothesis reuse,MAHR)进行分类,由于经过PLSA降维后的特征组本身就具有语义信息,因此算法能够精确地挖掘出多标记之间的关系并用于训练基分类器,从而避免了人为输入标记关系的缺陷。实验验证了该方法能够充分利用PLSA降维得到的语义信息来改善多标记文本分类的性能。  相似文献   

8.
多示例多标记学习(Multi-Instance Multi-Label,MIML)是一种新的机器学习框架,基于该框架上的样本由多个示例组成并且与多个类别相关联,该框架因其对多义性对象具有出色的表达能力,已成为机器学习界研究的热点.解决MIML分类问题的最直接的思路是采用退化策略,通过向多示例学习或多标记学习的退化,将MIML框架下的分类问题简化为一系列的二类分类问题进行求解.但是在退化过程中会丢失标记之间的关联信息,降低分类的准确率.针对此问题,本文提出了MIMLSVM-LOC算法,该算法将改进的MIMLSVM算法与一种局部标记相关性的方法ML-LOC相结合,在训练过程中结合标记之间的关联信息进行分类.算法首先对MIMLSVM算法中的K-medoids聚类算法进行改进,采用的混合Hausdorff距离,将每一个示例包转化为一个示例,将MIML问题进行了退化.然后采用单示例多标记的算法ML-LOC算法继续以后的分类工作.在实验中,通过与其他多示例多标记算法对比,得出本文提出的算法取得了比其他分类算法更优的分类效果.  相似文献   

9.
一个镜头中的语义概念通常依赖于其他多个语义概念,几个同时出现的语义概念决定着另一个语义概念的出现。为此提出一种概念间关联依赖多标记视频语义概念分类方法。为得到概念间关联依赖规则,合并和修剪技术用于产生候选的项集;计算各候选项集的支持度后,得到满足最小支持度的频繁项集;经过一系列频繁项集迭代,产生具有强关联依赖关系的复合标记;在标记过程中,将具有强关联依赖关系的多个语义标记作为单标记进行标注。实验结果表明,对真实媒体数据本文方法比现有多标记分类方法更能有效进行分类。  相似文献   

10.
提出一种针对弱标记的多标记数据集成学习分类方法,它通过采用基于相似性成对约束投影的方法来处理数据,更好地利用了弱标记样本的特征,从而提高了分类性能。  相似文献   

11.
Ensemble methods have been shown to be an effective tool for solving multi-label classification tasks. In the RAndom k-labELsets (RAKEL) algorithm, each member of the ensemble is associated with a small randomly-selected subset of k labels. Then, a single label classifier is trained according to each combination of elements in the subset. In this paper we adopt a similar approach, however, instead of randomly choosing subsets, we select the minimum required subsets of k labels that cover all labels and meet additional constraints such as coverage of inter-label correlations. Construction of the cover is achieved by formulating the subset selection as a minimum set covering problem (SCP) and solving it by using approximation algorithms. Every cover needs only to be prepared once by offline algorithms. Once prepared, a cover may be applied to the classification of any given multi-label dataset whose properties conform with those of the cover. The contribution of this paper is two-fold. First, we introduce SCP as a general framework for constructing label covers while allowing the user to incorporate cover construction constraints. We demonstrate the effectiveness of this framework by proposing two construction constraints whose enforcement produces covers that improve the prediction performance of random selection by achieving better coverage of labels and inter-label correlations. Second, we provide theoretical bounds that quantify the probabilities of random selection to produce covers that meet the proposed construction criteria. The experimental results indicate that the proposed methods improve multi-label classification accuracy and stability compared to the RAKEL algorithm and to other state-of-the-art algorithms.  相似文献   

12.
In classification problems with hierarchical structures of labels, the target function must assign labels that are hierarchically organized and it can be used either for single-label (one label per instance) or multi-label classification problems (more than one label per instance). In parallel to these developments, the idea of semi-supervised learning has emerged as a solution to the problems found in a standard supervised learning procedure (used in most classification algorithms). It combines labelled and unlabelled data during the training phase. Some semi-supervised methods have been proposed for single-label classification methods. However, very little effort has been done in the context of multi-label hierarchical classification. Therefore, this paper proposes a new method for supervised hierarchical multi-label classification, called HMC-RAkEL. Additionally, we propose the use of semi-supervised learning, self-training, in hierarchical multi-label classification, leading to three new methods, called HMC-SSBR, HMC-SSLP and HMC-SSRAkEL. In order to validate the feasibility of these methods, an empirical analysis will be conducted, comparing the proposed methods with their corresponding supervised versions. The main aim of this analysis is to observe whether the semi-supervised methods proposed in this paper have similar performance of the corresponding supervised versions.  相似文献   

13.
Multilabel classification via calibrated label ranking   总被引:3,自引:0,他引:3  
Label ranking studies the problem of learning a mapping from instances to rankings over a predefined set of labels. Hitherto existing approaches to label ranking implicitly operate on an underlying (utility) scale which is not calibrated in the sense that it lacks a natural zero point. We propose a suitable extension of label ranking that incorporates the calibrated scenario and substantially extends the expressive power of these approaches. In particular, our extension suggests a conceptually novel technique for extending the common learning by pairwise comparison approach to the multilabel scenario, a setting previously not being amenable to the pairwise decomposition technique. The key idea of the approach is to introduce an artificial calibration label that, in each example, separates the relevant from the irrelevant labels. We show that this technique can be viewed as a combination of pairwise preference learning and the conventional relevance classification technique, where a separate classifier is trained to predict whether a label is relevant or not. Empirical results in the area of text categorization, image classification and gene analysis underscore the merits of the calibrated model in comparison to state-of-the-art multilabel learning methods.  相似文献   

14.
提出一种基于超椭球支持向量机的多类文本分类算法。对每一类样本,利用超椭球支持向量机方法在特征空间求得一个超椭球,使其包含该类尽可能多的样本,同时将噪音点排除在外。分类时,利用待分类样本映射到每个超椭球球心的马氏距离确定其类别。在标准数据集Reuters 21578上的实验结果表明,该算法有效地提高了分类精度。  相似文献   

15.
In hierarchical classification, classes are arranged in a hierarchy represented by a tree or a forest, and each example is labeled with a set of classes located on paths from roots to leaves or internal nodes. In other words, both multiple and partial paths are allowed. A straightforward approach to learn a hierarchical classifier, usually used as a baseline method, consists in learning one binary classifier for each node of the hierarchy; the hierarchical classifier is then obtained using a top-down evaluation procedure. The main drawback of this naive approach is that these binary classifiers are constructed independently, when it is clear that there are dependencies between them that are motivated by the hierarchy and the evaluation procedure employed. In this paper, we present a new decomposition method in which each node classifier is built taking into account other classifiers, its descendants, and the loss function used to measure the goodness of hierarchical classifiers. Following a bottom-up learning strategy, the idea is to optimize the loss function at every subtree assuming that all classifiers are known except the one at the root. Experimental results show that the proposed approach has accuracies comparable to state-of-the-art hierarchical algorithms and is better than the naive baseline method described above. Moreover, the benefits of our proposal include the possibility of parallel implementations, as well as the use of all available well-known techniques to tune binary classification SVMs.  相似文献   

16.
In multi-label classification, examples can be associated with multiple labels simultaneously. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. The binary relevance approach is one of these methods, where the multi-label learning task is decomposed into several independent binary classification problems, one for each label in the set of labels, and the final labels for each example are determined by aggregating the predictions from all binary classifiers. However, this approach fails to consider any dependency among the labels. Aiming to accurately predict label combinations, in this paper we propose a simple approach that enables the binary classifiers to discover existing label dependency by themselves. An experimental study using decision trees, a kernel method as well as Naïve Bayes as base-learning techniques shows the potential of the proposed approach to improve the multi-label classification performance.  相似文献   

17.
多标签代价敏感分类集成学习算法   总被引:10,自引:2,他引:10       下载免费PDF全文
付忠良 《自动化学报》2014,40(6):1075-1085
尽管多标签分类问题可以转换成一般多分类问题解决,但多标签代价敏感分类问题却很难转换成多类代价敏感分类问题.通过对多分类代价敏感学习算法扩展为多标签代价敏感学习算法时遇到的一些问题进行分析,提出了一种多标签代价敏感分类集成学习算法.算法的平均错分代价为误检标签代价和漏检标签代价之和,算法的流程类似于自适应提升(Adaptive boosting,AdaBoost)算法,其可以自动学习多个弱分类器来组合成强分类器,强分类器的平均错分代价将随着弱分类器增加而逐渐降低.详细分析了多标签代价敏感分类集成学习算法和多类代价敏感AdaBoost算法的区别,包括输出标签的依据和错分代价的含义.不同于通常的多类代价敏感分类问题,多标签代价敏感分类问题的错分代价要受到一定的限制,详细分析并给出了具体的限制条件.简化该算法得到了一种多标签AdaBoost算法和一种多类代价敏感AdaBoost算法.理论分析和实验结果均表明提出的多标签代价敏感分类集成学习算法是有效的,该算法能实现平均错分代价的最小化.特别地,对于不同类错分代价相差较大的多分类问题,该算法的效果明显好于已有的多类代价敏感AdaBoost算法.  相似文献   

18.
    
  相似文献   

19.
传统的读者情绪分类主要从情感分析的角度出发,着重考量读者评论中体现出来的情感极性。然而现实中,读者评论的缺失有可能影响情绪分类的有效性和及时性。如何融合包括新闻文本和评论在内的多视角信息,对读者情绪进行更加准确的研判,成为了一个具有挑战性的问题。针对这一问题,构建了一种融合多视角信息的多标签隐语义映射模型(Multi-view Multi-label Latent Indexing,MV-MLSI),将不同视角下的文本特征映射到低维语义空间,同时建立特征和标签之间的映射函数,通过最小化重构误差对模型进行求解,并设计了相关算法,从而实现对读者情绪的有效预测。相比于传统模型,该模型不仅可以充分利用多视角的信息,而且考虑了标签之间的相关性。在新闻文本数据集上的实验表明,该方法可以获得更高的准确率和稳定性。  相似文献   

20.
针对现有技术难以并行实现舌象多标签的高效分类和识别,难以利用标签间的相关性进行综合分析等问题,提出了一种基于多任务卷积神经网络的舌象分类方法,构建了一种多任务联合学习模型,尝试实现传统中医舌诊中对舌色、苔色、裂纹和齿痕等多个标签的同时辨识。首先,在共享网络层对所有标签进行联合学习,从特征提取的角度自动挖掘和利用标签间的相关性;然后,在不同子网络层分别完成特定类别的学习任务,从而消除多标签分类中的歧义性;最后,训练多个Softmax分类器以实现对所有标签的并行预测。研究表明,所提方法能以端到端的方式同时提取舌象的多个特征并直接进行分类识别,在各分类评价指标上的最低值约为0.96,多任务的总体识别时间为34ms,因此该方法在精度和速度上均具有明显优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号