首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
White blood cells (WBCs) are a major component of immunity in response to pathogen invasion. Neutrophils are the most abundant WBCs in humans, playing a central role in acute inflammation induced by pathogens. Adhesion to vasculature and tissue infiltration of neutrophils are key processes in acute inflammation. Many inflammatory/autoimmune disorders and cancer therapies have been found to be involved in activation and tissue infiltration of neutrophils. A promising strategy to develop novel targeted drug delivery systems is the targeting and exploitation of activated neutrophils. Herein, a new drug delivery platform based on neutrophils is reviewed. There are two types of drug delivery systems: neutrophils as carriers and neutrophil‐membrane‐derived nanovesicles. It is discussed how nanoparticles hijack neutrophils in vivo to deliver therapeutics across blood vessel barriers and how neutrophil‐membrane‐derived nanovesicles target inflamed vasculature. Finally, the potential applications of neutrophil‐based drug delivery systems in treating inflammation and cancers are presented.  相似文献   

2.
A new approach to loading multiple drugs onto the same drug‐delivery nanocarrier in a precisely controllable manner, by covalently preconjugating multiple therapeutic agents through hydrolyzable linkers to form drug conjugates, is reported. In contrast to loading individual types of drugs separately, this drug‐conjugates strategy enables the loading of multiple drugs onto the same carrier with a predefined stoichiometric ratio. The cleavable linkers allow the therapeutic activity of the individual drugs to be resumed after the drug conjugates are delivered into the target cells and unloaded from the delivery vehicle. As a proof of concept, the synthesis and characterization of paclitaxel–gemcitabine conjugates are demonstrated. The time‐dependent hydrolysis kinetics and cytotoxicity of the combinatorial drug conjugates against human pancreatic cancer cells are examined. It is shown that the synthesized drug conjugates can be readily encapsulated into a lipid‐coated polymeric drug‐delivery nanoparticle, which significantly improves the cytotoxicity of the drug conjugates as compared to the free drug conjugates.  相似文献   

3.
4.
Ultrasound‐induced bubble activity (cavitation) has been recently shown to actively transport and improve the distribution of therapeutic agents in tumors. However, existing cavitation‐promoting agents are micron‐sized and cannot sustain cavitation activity over prolonged time periods because they are rapidly destroyed upon ultrasound exposure. A novel ultrasound‐responsive single‐cavity polymeric nanoparticle (nanocup) capable of trapping and stabilizing gas against dissolution in the bloodstream is reported. Upon ultrasound exposure at frequencies and intensities achievable with existing diagnostic and therapeutic systems, nanocups initiate and sustain readily detectable cavitation activity for at least four times longer than existing microbubble constructs in an in vivo tumor model. As a proof‐of‐concept of their ability to enhance the delivery of unmodified therapeutics, intravenously injected nanocups are also found to improve the distribution of a freely circulating IgG mouse antibody when the tumor is exposed to ultrasound. Quantification of the delivery distance and concentration of both the nanocups and coadministered model therapeutic in an in vitro flow phantom shows that the ultrasound‐propelled nanocups travel further than the model therapeutic, which is itself delivered to hundreds of microns from the vessel wall. Thus nanocups offer considerable potential for enhanced drug delivery and treatment monitoring in oncological and other biomedical applications.  相似文献   

5.
6.
Protein‐based nanomedicine platforms for drug delivery comprise naturally self‐assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug‐delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug‐delivery systems, including the ferritin/apoferritin protein cage, plant‐derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein‐based platforms, including various protein cages, microspheres, nanoparticles, hydrogels, films, minirods, and minipellets. The protein cage is the most newly developed biomaterial for drug delivery and therapeutic applications. The uniform size, multifunctionality, and biodegradability push it to the frontier of drug delivery. In this Review, the recent strategic development of drug delivery is discussed with emphasis on polymer‐based, especially protein‐based, nanomedicine platforms for drug delivery. The advantages and disadvantages are also discussed for each type of protein‐based drug‐delivery system.

  相似文献   


7.
8.
Herein, the use of red blood cells (RBCs) as carriers of cytoplasmically interned phototherapeutic agents is described. Photolysis promotes drug release from the RBC carrier thereby providing the means to target specific diseased sites. This strategy is realized with a vitamin B12‐taxane conjugate (B12‐TAX), in which the drug is linked to the vitamin via a photolabile Co? C bond. The conjugate is introduced into mouse RBCs (mRBCs) via a pore‐forming/pore‐resealing procedure and is cytoplasmically retained due to the membrane impermeability of B12. Photolysis separates the taxane from the B12 cytoplasmic anchor, enabling the drug to exit the RBC carrier. A covalently appended Cy5 antenna sensitizes the conjugate (Cy5‐B12‐TAX) to far red light, thereby circumventing the intense light absorbing properties of hemoglobin (350–600 nm). Microscopy and imaging flow cytometry reveal that Cy5‐B12‐TAX‐loaded mRBCs act as drug carriers. Furthermore, intravital imaging of mice furnish a real time assessment of circulating phototherapeutic‐loaded mRBCs as well as evidence of the targeted photorelease of the taxane upon photolysis. Histopathology confirms that drug release occurs in a well resolved spatiotemporal fashion. Finally, acoustic angiography is employed to assess the consequences of taxane release at the tumor site in Nu/Nu‐tumor‐bearing mice.  相似文献   

9.
A photothermal ablation‐enhanced transdermal drug delivery methodology is developed based on hollow copper sulfide nanoparticles (HCuSNPs) with intense photothermal coupling effects. Application of nanosecond‐pulsed near‐infrared laser allows rapid heating of the nanoparticles and instantaneous heat conduction. This provides very short periods of time but extremely high temperatures in local regions, with focused thermal ablation of the stratum corneum. The depth of skin perforations can be controlled by adjusting the laser power. Skin disruption by HCuSNP‐mediated photothermal ablation significantly increases the permeability of human growth hormone. This technique offers compelling opportunities for macromolecular drug and vaccine delivery.  相似文献   

10.
11.
12.
One of the main problems in cancer treatment is disease relapse through metastatic colonization, which is caused by circulating tumor cells (CTCs). This work reports on liposome‐loaded microbubbles targeted to N‐cadherin, a cell–cell adhesion molecule expressed by CTCs. It is shown that such microbubbles can indeed bind to N‐cadherin at the surface of HMB2 cells. Interestingly, in a mixture of cells with and without N‐cadherin expression, binding of the liposome‐loaded microbubbles mainly occurs to the N‐cadherin‐expressing cells. Importantly, applying ultrasound results in the intracellular delivery of a model drug (loaded in the liposomes) in the N‐cadherin‐expressing cells only. As described in this paper, such liposome‐loaded microbubbles may find application as theranostics and in devices aimed for the specific killing of CTCs in blood.  相似文献   

13.
Effective drug delivery systems that can systematically and selectively transport payloads to disease cells remain a challenge. Here, a targeting ligand‐modified DNA origami nanostructure (DON) as an antibody–drug conjugate (ADC)‐like carrier for targeted prostate cancer therapy is reported. Specifically, DON of six helical bundles is modified with a ligand 2‐[3‐(1,3‐dicarboxy propyl)‐ureido] pentanedioic acid (DUPA) against prostate‐specific membrane antigen (PSMA), to serve as the antibody for drug conjugation in ADC. Doxorubicin (Dox) is then loaded to DON through intercalation to dsDNA. This platform features in spatially controllable organization of targeting ligands and high drug loading capacity. With this nanocomposite, selective delivery of Dox to the PSMA+ cancer cell line LNCaP is readily achieved. The consequent therapeutic efficacy is critically dependent on the numbers of targeting ligand assembled on DON. This target‐specific and biocompatible drug delivery platform with high maximum tolerated doses shows immense potential for developing novel nanomedicine.  相似文献   

14.
15.
16.
17.
Nanodiamonds (NDs) are promising candidates for biomedical application due to their excellent biocompatibility and innate physicochemical properties. In this Concept article, nanodiamond‐based theranostic platforms, which combine both drug delivery features and bioimaging functions, are discussed. The latest developments of therapeutic strategies are introduced and future perspectives for theranostic NDs are addressed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号