首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compatibilization of blends of linear low‐density polyethylene (LLDPE)–poly(methyl methacrylate) (PMMA) and LLDPE–copolymer of methyl methacrylate (MMA) and 4‐vinylpyridine (poly(MMA‐co‐4VP) with poly(ethylene‐co‐methacrylic acid) (EMAA) have been studied. Mechanical properties of the LLDPE–PMMA blends increase upon addition of EMAA. In order to further improve interfacial adhesion of LLDPE and PMMA, 4‐vinyl pyridine units are introduced into PMMA chains, or poly(MMA‐co‐4VP) is used as the polar polymer. In LLDPE–poly(MMA‐co‐4VP)–EMAA blends, interaction of MAA in EMAA with 4VP of poly(MMA‐co‐4VP) causes a band shift in the infrared (IR) spectra. Chemical shifts of N1s binding energy in X‐ray photoelectronic spectroscopy (XPS) experiments indicate a transfer of proton from MAA to 4VP. Scanning electron microscopy (SEM) pictures show that the morphology of the blends were improved upon addition of EMAA. Nonradiative energy transfer (NRET) fluorescence results attest that there exists interdiffusion of chromophore‐labeled LLDPE chains and chromophore‐labeled poly(MMA‐co‐4VP) chains in the interface. Based on experimental results, the mechanism of compatibilization is studied in detail. Compatibilization is realized through the interaction between MAA in EMAA with 4VP in poly(MMA‐co‐4VP). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 967–973, 1999  相似文献   

2.
A novel block copolymer, poly(ε‐caprolactone)‐b‐poly(4‐vinyl pyridine), was synthesized with a bifunctional initiator strategy. Poly(ε‐caprolactone) prepolymer with a 2,2,6,6‐tetramethylpiperidinyloxy (TEMPO) end group (PCLT) was first obtained by coordination polymerization, which showed a controlled mechanism in the process. By means of ultraviolet spectroscopy and electron spin resonance spectroscopy, the TEMPO moiety was determined to be intact in the polymerization. The copolymers were then obtained by the controlled radical polymerization of 4‐vinyl pyridine in the presence of PCLT. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared spectroscopy, and NMR spectroscopy in detail. Also, the effects of the molecular weight and concentration of PCLT on the copolymerization were investigated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2280–2285, 2004  相似文献   

3.
Well‐defined poly(methyl methacrylate) (Mn = 3630 g mol?1, PDI = 1.06) with a primary benzylic bromide prepared using anionic polymerization was successfully transformed into diverse end‐functionalities (ω‐carboxyl, ω‐hydroxy, ω‐methyl‐vinyl, ω‐trimethylsilane, and ω‐glycidyl‐ether) via “click” reaction. The bromine end‐terminated poly(methyl methacrylate) was first substituted by an azide function and sequentially was reacted with various functional alkynes (propiolic acid, propargyl alcohol, 2‐methyl‐1‐buten‐3‐yne, propargyl trimethylsilane, and propargyl glycidylether). In all the cases, 1H‐NMR, 13C NMR, FT‐IR, and GPC measurements show qualitative and quantitative transformation of the chain‐end poly(methyl methacrylate) into the desired functionalities with high conversion (above 99%). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The graft polymerization of methyl methacrylate and butyl acrylate onto poly(vinyl chloride‐co‐vinyl acetate) with atom transfer radical polymerization (ATRP) was successfully carried out with copper(I) thiocyanate/N,N,N,N,N″‐pentamethyldiethylenetriamine and copper(I) chloride/2,2′‐bipyridine as catalysts in the solvent N,N‐dimethylformamide. For methyl methacrylate, a kinetic plot of ln([M]0/[M]) (where [M]0 is the initial monomer concentration and [M] is the monomer concentration) versus time for the graft polymerization was almost linear, and the molecular weight of the graft copolymer increased with increasing conversion, this being typical for ATRP. The formation of the graft polymer was confirmed with gel permeation chromatography, 1H‐NMR, and Fourier transform infrared spectroscopy. The glass‐transition temperature of the copolymer increased with the concentration of methyl methacrylate. The graft copolymer was hydrolyzed, and its swelling capacity was measured. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 183–189, 2005  相似文献   

5.
Well‐defined poly(vinyl acetate‐b‐methyl methacrylate) block copolymers were successfully synthesized by the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in p‐xylene with CuBr as a catalyst, 2,2′‐bipyridine as a ligand, and trichloromethyl‐end‐grouped poly(vinyl acetate) (PVAc–CCl3) as a macroinitiator that was prepared via the telomerization of vinyl acetate with chloroform as a telogen. The block copolymers were characterized with gel permeation chromatography, Fourier transform infrared, and 1H‐NMR. The effects of the solvent and temperature on ATRP of MMA were studied. The control over a large range of molecular weights was investigated with a high [MMA]/[PVAc–CCl3] ratio for potential industry applications. In addition, the mechanism of the polymerization was discussed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1089–1094, 2006  相似文献   

6.
Poly(methyl methacrylate)‐poly(L ‐lactic acid)‐poly(methyl methacrylate) tri‐block copolymer was prepared using atom transfer radical polymerization (ATRP). The structure and properties of the copolymer were analyzed using infrared spectroscopy, gel permeation chromatography, nuclear magnetic resonance (1H‐NMR, 13C‐NMR), thermogravimetry, and differential scanning calorimetry. The kinetic plot for the ATRP of methyl methacrylate using poly(L ‐lactic acid) (PLLA) as the initiator shows that the reaction time increases linearly with ln[M]0/[M]. The results indicate that it is possible to achieve grafted chains with well‐defined molecular weights, and block copolymers with narrowed molecular weight distributions. The thermal stability of PLLA is improved by copolymerization. A new wash‐extraction method for removing copper from the ATRP has also exhibits satisfactory results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Core–shell‐type microspheres with microphase‐separated shells of polystyrene (PS) and poly(ethylene glycol) (PEG) (microsphereblock: molar ratio: PS/PEG 49.1/45.9 mol %; Mw: PS chain: 1.07 × 104, PEG chain 1.0 × 104; the ratio of arm numbers of PEG to PS: 1.0; microspheregraft: molar ratio: PS/PEG 33.8/55.9 mol %; Mw: PS chain: 1.54 × 104, PEG chain 1.0 × 104, the ratio of arm numbers of PEG to PS: 2.55) were synthesized by crosslinking of spherical domains of poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(4‐vinyl pyridine) (P4VP) of the microphase‐separated films of poly(ethylene glycol)‐block‐poly(2‐hydroxyethyl methacrylate)‐block‐polystyrene triblock terpolymer (Mn: 2.18 × 104; molar ratio: PS 49.1 mol %, PHEMA 5.0 mol %, PEG 45.9 mol %) and polystyrene‐block‐[poly(4‐vinyl pyridine)‐graft‐poly(ethylene glycol)] block–graft copolymer (Mn: 4.56 × 104; molar ratio: PS 33.8 mol %, P4VP 10.3 mol %, PEG 55.9 mol %; branch number of PEG: 2.55), respectively. The structures of microphase‐separated films were investigated by transmission electron microscopy and small‐angle X‐ray scattering. The effects of the arm number ratio of PS to PEG and the total arm number on the stability of the water/benzene emulsion were investigated. The emulsion stability of oil in water was improved by using the microsphere synthesized with the microspheregraft. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 321–331, 2004  相似文献   

8.
Combination of cationic, redox free radical, and thermal free radical polymerizations was performed to obtain linear and star polytetramethylene oxide (poly‐THF)‐polymethyl methacrylate (PMMA)/polystyrene (PSt) multiblock copolymers. Cationic polymerization of THF was initiated by the mixture of AgSbF6 and bis(4,4′ bromo‐methyl benzoyl) peroxide (BBP) or bis (3,5,3′,5′ dibromomethyl benzoyl) peroxide (BDBP) at 20°C to obtain linear and star poly‐THF initiators with Mw varying from 7,500 to 59,000 Da. Poly‐THF samples with hydroxyl ends were used in the methyl methacrylate (MMA) polymerization in the presence of Ce(IV) salt at 40°C to obtain poly(THF‐b‐MMA) block copolymers containing the peroxide group in the middle. Poly(MMA‐b‐THF) linear and star block copolymers having the peroxide group in the chain were used in the polymerization of methyl methacrylate (MMA) and styrene (St) at 80°C to obtain PMMA‐b‐PTHF‐b‐PMMA and PMMA‐b‐PTHF‐b‐PSt linear and star multiblock copolymers. Polymers obtained were characterizated by GPC, FT‐IR, DSC, TGA, 1H‐NMR, and 13C‐NMR techniques and the fractional precipitation method. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 219–226, 2004  相似文献   

9.
Polymer–inorganic hybrid nanoparticles were prepared through radical photo‐polymerization of methyl methacrylate initiated by N,N‐diethyldithiocarbamyl surface functionalized silica nanoparticles under UV irradiation at ambient temperature. IR analysis and UV spectroscopy confirmed the occurrence of Et2NCS2—end groups on the resulting poly(methyl methacrylate), and the morphology of these hybrid nanoparticles was observed directly by means of tapping mode atomic force microscopy (AFM). Copyright © 2003 Society of Chemical Industry  相似文献   

10.
In this study, synthesis, characterization, partial hydrolysis, and salt formation of poly(2‐hydroxyethyl methacrylate)‐co‐poly(4‐vinyl pyridine), (poly(HEMA)‐co‐poly‐(4‐VP)) copolymers were investigated. The copolymers were synthesized by free radical polymerization using K2S2O8 as an initiator. By varying the monomer/initiator ratio, chain lengths of the copolymers were changed. The copolymers were characterized by gel permeation chromatography (GPC), viscosity measurements, 1H and 13C NMR and FTIR spectroscopies, elemental analysis, and end group analysis methods. The copolymers were partially hydrolyzed by p‐toluene sulfonic acid monohydrate (PTSA·H2O) and washed with LiOH(aq) solution to prepare electrorheological (ER) active ionomers, poly(Li‐HEMA)‐co‐poly(4‐VP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3540–3548, 2006  相似文献   

11.
The application potential of hydrophobic polymer is numerous. Lauryl methacrylate (LMA) having long alkyl chain is a commercially available hydrophobic monomer. In this investigation, poly‐LMA (PLMA) latex particles were prepared by suspension polymerization in aqueous media using 2,2′‐azobis(isobutyronitrile) (AIBN) in presence of poly(vinyl alcohol) (PVA) as steric stabilizer. The preparation kinetics was studied in detail in terms of percentage yield and particle size variation. Low glass transition temperature (~ ?65°C) associated with high flexibility did not allow electron micrographic observation though 1H‐NMR and particle size measurement confirmed the formation of PLMA latex. To improve the glass transition temperature, aqueous emulsion copolymerization of LMA with methyl methacrylate (MMA) was carried out. The solubility of LMA was improved by adding ethanol to the aqueous phase. Two types of polymeric stabilizers, PVA and poly(vinyl pyrrolidone) (PVP) were used to stabilize the colloidal particles. The nature of the stabilizer affected both morphology and final rate of polymerization. The hydrophobic P(LMA‐MMA) copolymer particles were subsequently modified by nanosized magnetic (Fe3O4) particles by two different methods. The in situ formation of Fe3O4 particles in presence of P(LMA‐MMA) was found to be suitable for the preparation of magnetic latex particles. Scanning electron microscope (SEM), FTIR, transmission electron microscope (TEM), X‐ray diffraction (XRD) and energy‐dispersive X‐ray spectroscopy (EDX) were used for the characterization of magnetically doped particles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Poly(epichlorohydrin‐g‐styrene) and poly (epichlorohydrin‐g‐methyl methacrylate) graft copolymers were synthesized by a combination of cationic and photoinitiated free‐radical polymerization. For this purpose, first, epichlorohydrin was polymerized with tetrafluoroboric acid (HBF4) via a cationic ring‐opening mechanism, and, then, polyepichlorohydrin (PECH) was reacted ethyl‐hydroxymethyl dithio sodium carbamate to obtain a macrophotoinitiator. PECH, possessing photolabile thiuram disulfide groups, was used in the photoinduced polymerization of styrene or methyl methacrylate to yield the graft copolymers. The graft copolymers were characterized by 1H‐NMR spectroscopy, differential scanning calorimetry, and gel permeation chromatography. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Diblock copolymer poly(methyl methacrylate)‐b‐poly(vinyl acetate) (PMMA‐b‐PVAc) was prepared by 1,1‐diphenylethene (DPE) method. First, free‐radical polymerization of methyl methacrylate was carried out with AIBN as initiator in the presence of DPE, giving a DPE containing PMMA precursor with controlled molecular weight. Second, vinyl acetate was polymerized in the presence of the PMMA precursor and AIBN, and PMMA‐b‐PVAc diblock copolymer with controlled molecular weight was obtained. The formation of PMMA‐b‐PVAc was confirmed by 1H NMR spectrum. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to detect the self‐assembly behavior of the diblock polymer in methanol. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Poly(epichlorohydrin) possessing chloromethyl side groups in the main chain was used in the atom transfer radical polymerization of methyl methacrylate and styrene to yield poly(epichlorohydrin‐g‐methyl methacrylate) and poly(epichlorohydrin‐g‐styrene graft copolymers. The polymers were characterized by 1H NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry, and fractional precipitation method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2725–2729, 2006  相似文献   

15.
Multiwalled carbon nanotube was successfully grafted with poly(methyl methacrylate) by free radical mechanism using benzoyl peroxide initiator. The reaction was carried out in situ, where the initiator and methyl methacrylate monomer generated the polymer‐free radical that was subsequently grafted to the surface of the pristine multiwalled carbon nanotube. The multiwalled carbon nanotube grafted poly(methyl methacrylate) (MWCNT‐g‐PMMA) were characterized using Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, 13 C‐solid NMR spectroscopy, X‐ray photoelectron spectroscopy, and scan electron microscopy. From the result of the characterizations, the grafting of poly(methyl methacrylate) on to multiwalled carbon nanotube was confirmed, and a percentage grafting of 41.51% weight was achieved under optimized conditions with respect to the temperature and the amount of the initiator. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43270.  相似文献   

16.
Diblock copolymers of poly(L ‐lactide)‐block‐poly(methyl methacrylate) (PLLA‐b‐PMMA) were synthesized through a sequential two‐step strategy, which combines ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP), using a bifunctional initiator, 2,2,2‐trichloroethanol. The trichloro‐terminated poly(L ‐lactide) (PLLA‐Cl) with high molecular weight (Mn,GPC = 1–12 × 104 g/mol) was presynthesized through bulk ROP of L ‐lactide (L ‐LA), initiated by the hydroxyl group of the double‐headed initiator, with tin(II) octoate (Sn(Oct)2) as catalyst. The second segment of the block copolymer was synthesized by the ATRP of methyl methacrylate (MMA), with PLLA‐Cl as macroinitiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalyst, and dimethyl sulfoxide (DMSO) was chosen as reaction medium due to the poor solubility of the macroinitiator in conventional solvents at the reaction temperature. The trichloroethoxyl terminal group of the macroinitiator was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H‐NMR spectroscopy. The comprehensive results from GPC, FTIR, 1H‐NMR analysis indicate that diblock copolymers PLLA‐b‐PMMA (Mn,GPC = 5–13 × 104 g/mol) with desired molecular composition were obtained by changing the molar ratio of monomer/initiator. DSC, XRD, and TG analyses establish that the crystallization of copolymers is inhibited with the introduction of PMMA segment, which will be beneficial to ameliorating the brittleness, and furthermore, to improving the thermal performance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
In this study, poly(methyl methacrylate)/p-phenylenediamine-graphene oxide, poly(methyl methacrylate)/graphene, and poly(methyl methacrylate)/graphene oxide nanocomposite series were prepared using simple solution blending technique. In poly(methyl methacrylate)/p-phenylenediamine-graphene oxide series, graphene oxide modified with p-phenylenediamine was used to improve its dispersion and interfacial strength with matrix. Morphology study of poly(methyl methacrylate)/p-phenylenediamine-graphene oxide nanocomposite revealed better dispersion of p-phenylenediamine-graphene oxide flakes and gyroid patterning of poly(methyl methacrylate) over the filler surface. Due to nonconducting nature of graphene oxide, there was no significant variation in the thermal or electrical conductivity of these nanocomposites. Thermal conductivity of poly(methyl methacrylate)/p-phenylenediamine-graphene oxide 1.5 was 1.16 W/mK, while the electrical conductivity was found to be 2.3 × 10?3 S/cm.  相似文献   

18.
A silane‐containing diamine, bis(p‐aminophenoxy) diphenylsilane (BADPS), was prepared by the condensation of p‐aminophenol with dichlorodiphenyl silane in the presence of triethylamine. Then, BADPS was condensed with 4,4‐azobis(4‐cyanopentanoyl chloride) to prepare macroazoinitiators containing silane units (Si–MAIs). A series of poly(methyl methacrylate) gels containing silane were derived by the solution free‐radical crosslinking copolymerization of methyl methacrylate and ethylene glycol dimethacrylate monomers initiated by these macroazoinitiators at a total monomer concentration of 6 mol/L and 80°C. Si–MAIs were characterized with 1H‐NMR and 13C‐NMR spectroscopy, and the structural characteristics of the gels were also examined. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
The structure and the thermodegradation behavior of both poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate)/Cloisite 15A? nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X‐ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

20.
In order to obtain modified polymeric electrodes, polymers were synthesized that are insoluble in water but soluble in common organic solvents and contain different functional groups that are able to coordinate metal ions from low concentrations. Poly(acrylic acid‐co‐styrene), poly(acrylamide‐co‐4‐vinyl pyridine), and poly(styrene‐co‐4‐vinyl pyridine) were synthesized by radical polymerization. The copolymers were characterized by FTIR, 1H‐NMR, 13C‐NMR, scanning electron microscopy, and thermal analysis. The molecular weight and molecular weight distribution were determined by size exclusion chromatography. These complexing polymers were used in the preparation by spin coating of complexing chemically modified electrodes. The polymer film modified electrodes were then tested for the detection of metal ions using the chemical preconcentration and anodic stripping technique. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1192–1197, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号