首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The reinforcing effect of two structurally different Aramid short fibers, Technora and Twaron on the mechanical, dynamic mechanical, and thermal properties of an ester‐based thermoplastic polyurethane (TPU) was investigated. A fixed fiber length of 6 mm is used by varying the fiber loading ranging from 3 to 10 phr. The Young's modulus and the low strain modulus of Technora–TPU composite was found three times higher than that of Twaron–TPU composite at all ranges of fiber loading. Optical microscopic analysis revealed that a severe processing‐induced fiber breakage of Twaron is the primary reason behind the inferior properties shown by these fiber‐reinforced TPU composite. A brittle kind of failure has been observed during tensile testing in both the composite at a fiber loading of 10 phr. To solve this problem, an economic pretreatment with maleic anhydride‐grafted polybutadine (PB‐g‐MA) has been applied on the Aramid fiber surface before mixing it with the TPU matrix. A good quality of fiber dispersion with significant improvement in mechanical properties could be achieved with the addition of only 5 phr of PB‐g‐MA. Morphological analyses on the tensile‐fractured and cryogenically fractured surfaces of these composites offer strong evidences for the dispersing and coupling action of PB‐g‐MA with these Aramid fibers and the TPU matrix. POLYM. COMPOS., 35:1767–1778, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
Long glass fiber (LGF)‐reinforced thermoplastic polyurethane (TPU) elastomers and polyoxymethylene (POM) (LGF/TPU/POM) composites were prepared by using self‐designed impregnation device. Dynamic mechanical properties of the LGF/TPU/POM composites have been investigated by using dynamic mechanical thermal analysis. The results indicated that the storage modulus and glass transition temperature of the composites increase with increasing the glass fibers content and scanning frequencies. In addition, the Arrhenius relationship has been used to calculate the activation energy of α‐transition of the LGF/TPU/POM composites. The thermal stability of the LGF/TPU/POM composites was investigated by thermogravimetric analysis. The consequence demonstrated that the thermal stability increase with augmenting the content of glass fibers. The mechanical properties of the composites are investigated by a universal testing machine and a ZBC‐4 Impact Pendulum. The results demonstrated the mechanical properties of the composites aggrandize with augmenting the glass fibers content. The good dispersion of the LGFs in the matrix resins is obtained from scanning electron micrographs. POLYM. COMPOS., 35:2067–2073, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
Short fiber reinforcement is a suitable way to improve the tribological properties of elastomers. However, rubbers products are often exposed to highly dynamic mechanical loadings. Hereby it is crucial to study the change in dynamic behavior due to the addition of short fibers. Therefore, these properties were investigated in terms of dynamic mechanical thermal analysis, heat build‐up (HBU), and fatigue crack growth resistance under cyclic loadings for two different rubber compounds. A peroxide cured ethylene–propylene–diene rubber (EPDM) and a sulfur cured natural rubber (NR) compound were chosen and reinforced with two types of short aramid fibers. It was found that the short fibers could contribute to the improvement in the crack growth resistance, HBU, and the dynamic mechanical behavior of the composites depending on the testing conditions. POLYM. ENG. SCI., 54:2958–2964, 2014. © 2014 Society of Plastics Engineers  相似文献   

4.
The reinforcing effect of resorcinol formaldehyde latex (RFL) coated short aramid fiber on an ester‐based thermoplastic polyurethane (TPU) was investigated on the basis of mechanical properties. Short fibers having different fiber length were used for the reinforcement. The exceptionally high Young's modulus and low strain modulus indicate the reinforcing effect of this fiber on to the TPU matrix. It has been observed that fibers of 3 mm length at 10 phr loading and 6 mm length even at a loading of 5 phr start to exhibit severe fibrillation: the longitudinal splitting of fiber having larger diameter into thinner fibrils during processing. Fibrillation favorably affects the mechanical bonding with the matrix because of the large surface area as well as surface irregularities provided by the fibrillated fiber. However, fibrillation adversely affects the fiber dispersion by enhancing the fiber aggregation. This leads to a greater disturbance in the strain hardening behavior of the TPU matrix and subsequently reducing the tensile strength and elongation at break especially at high fiber loading. Therefore, to control the degree of fibrillation a pre‐treatment has been applied on the aramid fiber surface with maleic anhydride‐grafted‐polybutadiene (PB‐g‐MA) prior to mixing it with the TPU matrix. A good quality of fiber dispersion with improved tensile strength and elongation at break has been achieved even with 6 mm short fiber at a loading of 10 phr with the treatment of only 5 phr of PB‐g‐MA. The tensile fractured surface morphological analyses of PB‐g‐MA coated fiber filled TPU composite strongly advocate these results. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2205–2216, 2013  相似文献   

5.
In this study, we prepared short‐carbon‐fiber (CF)‐reinforced poly(lactic acid) (PLA)–thermoplastic polyurethane (TPU) blends by melt blending. The effects of the initial fiber length and content on the morphologies and thermal, rheological, and mechanical properties of the composites were systematically investigated. We found that the mechanical properties of the composites were almost unaffected by the fiber initial length. However, with increasing fiber content, the stiffness and toughness values of the blends were both enhanced because of the formation of a TPU‐mediated CF network. With the incorporation of 20 wt % CFs into the PLA–TPU blends, the tensile strength was increased by 70.7%, the flexural modulus was increased by 184%, and the impact strength was increased by 50.4%. Compared with that of the neat PLA, the impact strength of the CF‐reinforced composites increased up to 1.92 times. For the performance in three‐dimensional printing, excellent mechanical properties and a good‐quality appearance were simultaneously obtained when we printed the composites with a thin layer thickness. Our results provide insight into the relationship among the CFs, phase structure, and performance, as we achieved a good stiffness–toughness balance in the PLA–TPU–CF ternary composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46483.  相似文献   

6.
Carbon nanotube (CNT)/aramid fiber epoxy composites were produced using a new manufacturing method proposed in this study. The rheological and morphological experiments of the CNT/PEO nanocomposites indicates that the PEO nanocomposites have a good dispersion state of the CNTs. The flexural mechanical properties of the aramid fiber/CNT epoxy composites were measured. The CNTs dispersed in the epoxy resin between the aramid fibers were observed using field emission scanning electron miscroscope (FESEM). It was found that the flexural properties of the multiscale fiber‐reinforced composites were higher than those of aramid fiber/epoxy composites. POLYM. COMPOS., 28:458–461, 2007. © 2007 Society of Plastics Engineers.  相似文献   

7.
Three kinds of aramid fabrics, Technora (modified p-aramid), Conex (m-aramid) and Kevlar (p-aramid), were subjected to sputter etching and argon low-temperature plasma treatments after dyeing in black with disperse dyes. The depth of shade increased considerably on Technora and Kevlar with the sputter etching treatment, but not on Conex fabrics. Argon low-temperature plasma treatment had virtually no effect on the depth of shade on the aramid fabrics.  相似文献   

8.
After exposure to the atmospheric‐pressure air plasma at different discharge powers, the adhesion characteristics of Twaron aramid fibers were investigated. For the 12 s‐300 W plasma treatment, the interlaminar shear strength of Twaron fiber reinforced thermoplastic poly(phthalazinone ether sulfone ketone) was increased from 46.0 to 61.7 MPa by 34.1%, and the diffusion of water molecule into the resulting composites was proved to be effectively prevented. These results showed that surface adhesive properties of the plasma‐treated aramid fibers were improved. At the power level of 300 W, X‐ray photoelectron spectroscopy analysis revealed the increases in concentrations of oxygen and nitrogen polar groups on the fiber surface, and atomic force microscopy observations led to the conclusion that the fiber surface morphology was changed and the surface roughness was greatly increased. These new polar and irregular surface structures accounted for the better adhesion between the fiber and the matrix, while due to the reasonability of this discharge power level applied to the surface modification, the measured fiber tensile strength only decreased by 2.0%. POLYM. COMPOS., 37:620–626, 2016. © 2014 Society of Plastics Engineers  相似文献   

9.
Among the synthetic fibers, glass fibers (GF) are most widely used in thermoplastic short‐fiber‐reinforced polymers (SFRP), as they offer good strength and stiffness, impact resistance, chemical resistance, and thermal stability at a low price. Carbon fibers (CF) are applied instead of GF, when highest stiffness is required. Other types of synthetic fibers like aramid (AF), basalt (BF), polyacrylonitrile (PAN‐F), polyethylene terephthalate (PET‐F), or polypropylene fibers (PP‐F) are rarely used in SFRP, although they offer some advantages compared with GF. The aim of this article is, to give an overview of various fiber types with regard to their mechanical properties, densities, and prices as well as the performance of their thermoplastic composites. The mechanical properties are presented as Ashby plots of tensile strength versus tensile modulus, both in absolute and specific (absolute value divided by density) values. This overview also focuses on modification of fiber/matrix interaction, as interfacial adhesion has a huge impact on composite performance. A summary of established methods for characterization of fibers, polymers, and composites completes this article. POLYM. COMPOS., 35:227–236, 2014. © 2013 Society of Plastics Engineers  相似文献   

10.
The dynamic mechanical properties of microfibers of oil palm‐reinforced acrylonitrile butadiene rubber (NBR) composites were investigated as a function of fiber content, temperature, treatment, and frequency. The storage modulus (E′) was found to increase with weight fraction of microfibrils due to the increased stiffness imparted by the strong adhesion between the polar matrix and the hydrophilic microfibrils. The damping properties were found to decrease with increase in fiber loading. As the fiber content increases, the damping nature of the composite decreases because of the increased stiffness imparted by the natural fibers. By steam explosion method (STEX), microfibrils are separated from fibers. Natural fibers were undergone treatment such as mercerization, benzoylation, and silane treatment. The NBR is modified by the addition of resorcinol‐hexa‐hydrated silica (HRH) bonding agent. Also dicumyl peroxide (DCP) is used as an alternating vulcanizing agent in the system. In the case of composites containing chemically modified fibers, storage modulus were found to increase. Cole–Cole analysis was made to study the phase behavior of the composite samples. Activation energy for the relaxation processes in different composites was calculated. Morphological studies using scanning electron microscopy of tensile fracture surfaces of treated and untreated composites indicated better fiber matrix/adhesion in the case of treated microfibril‐reinforced composites. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

11.
A series of glass fiber‐reinforced rubber‐toughened nylon 6 composites was prepared. The mechanical properties and morphology of the composites toughened with ABS were investigated and compared with composites toughened with EPR‐g‐MA. A study of the mechanical properties showed that the balance of the impact strength and stiffness for both types of systems can be significantly improved by proper incorporation of glass fibers into toughened nylon 6. The differences between these two types of rubber‐toughened composites are significant at a high rubber content. However, the ductility of both composites toughened with rubber was significantly lower than that of blends without glass fiber. The relationships between rubber content, nylon 6 molecular weight, compatibilizer, processing, and mechanical properties are discussed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 484–497, 2001  相似文献   

12.
The barrier properties of short‐fiber‐reinforced epoxy foam are characterized and compared with unreinforced epoxy foam in terms of moisture absorption, flammability properties, and impact properties. Compression and shear properties are also included to place in perspective the mechanical behavior of these materials. Compared with conventional epoxy foam, foam reinforced with aramid fibers exhibits higher moisture absorption and lower diffusion, while glass‐fiber‐reinforced foam is significantly stiffer and stronger. In addition, the polymeric foam composites studied present superior fire‐resistance compared with conventional epoxy foam systems. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3266–3272, 2006  相似文献   

13.
Mechanical and dynamic‐mechanical properties of a typical tire tread compound reinforced with one part aramid short fibers were investigated in order to predict the effects of fibers on tire tread performances such as rolling resistance and traction. Rubber processing, including mixing and extrusion, was performed in an industrial scale. Fiber orientation as a result of extrusion was evaluated quantitatively and qualitatively using mechanical anisotropy in swelling and scanning electron microscopy, respectively. Unidirectional tensile tests revealed higher modulus, but slightly lower strength and elongation at break for the composites stretched in the longitudinal (orientation) and transverse directions than those for the isotropic reference compound with no fiber. Dynamic mechanical thermal analysis showed that relative values of loss factor for the longitudinal and transverse composites and the reference compound depended on the state of polymer as glassy or rubbery. Therefore, a high loss factor at lower temperatures and a low loss factor at higher temperatures predicted a balanced improvement of tire traction and rolling resistance as a result of fiber addition. Heat build‐up and abrasion experiments showed that addition of fiber did not deteriorate other performances of tire tread. Also, the fibers had negligible effects on processing and vulcanization characteristics of the composite. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Short aramid fibers have been successfully used to reinforce the interface adhesive property between carbon fiber/epoxy composites and aluminum foam, and to form aramid‐fiber “composite adhesive joints.” In this study, to further improve the reinforcing effect of the aramid‐fiber‐reinforced adhesive joints, aramid fibers were ultrasonic treated to conduct different surface conditions. Critical energy release rate of the carbon fiber/aluminum foam sandwich beams with as‐received and treated interfacial aramid fibers were measured to study the influence of the surface treatment on aramid fibers. It was found that reinforcements in critical energy release rate were achieved for all samples with treated aramid fiber as measured under double cantilever beam condition. The interfacial characteristics of the short aramid fibers with different surface condition were investigated and discussed based on scanning electron microscopy observations. It is suggested that advanced bonding between aramid fibers and epoxy resin was conducted after surface treatment, and more energy was therefore absorbed through fiber bridging during crack opening and extension process. POLYM. COMPOS., 36:192–197, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
The dynamic mechanical properties of macro and microfibers of oil palm‐reinforced natural rubber (NR) composites were investigated as a function of fiber content, temperature, treatment, and frequency. By the incorporation of macrofiber to NR, the storage modulus (E') value increases while the damping factor (tan δ) shifts toward higher temperature region. As the fiber content increases the damping nature of the composite decreases because of the increased stiffness imparted by the natural fibers. By using the steam explosion method, the microfibrils were separated from the oil palm fibers. These fibers were subjected to treatments such as mercerization, benzoylation, and silane treatment. Resorcinol‐hexamethylenetetramine‐hydrated silica was also used as bonding agent to increase the fiber/matrix adhesion. The storage modulus value of untreated and treated microfibril‐reinforced composites was higher than that of macrofiber‐reinforced composites. The Tg value obtained for this microfibril‐reinforced composites were slightly higher than that of macrofiber‐reinforced composites. The activation energy for the relaxation processes in different composites was also calculated. The morphological studies using scanning electron microscopy of tensile fracture surfaces of treated and untreated composites indicated better fiber/matrix adhesion in the case of treated microfibril‐reinforced composites. Finally, attempts were made to correlate the experimental dynamic properties with the theoretical predictions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
In this article, aramid fibers III were surface modified using an ammonia‐plasma treatment to improve the adhesive performance and surface wettability. The surface properties of fibers before and after plasma treatment were investigated by X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and water contact angle measurements. The interfacial shear strength of each aramid fibers III‐reinforced epoxy composites was studied by micro‐debonding test. The ammonia‐plasma treatment caused the significant chemical changes of aramid fibers III, introducing nitrogen‐containing polar functional groups, such as ? C? N? and ? CONH? , and improving their surface roughness, which contributed to the improvement of adhesive performance and surface wettability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40250.  相似文献   

17.
Two organofunctional silanes and a copolymer were used to increase the interfacial adhesion in glass fiber polypropylene (PP) reinforced composites. The performance of the coupling agents was investigated by means of mechanical property measurements, scanning electron microscopy (SEM), and dynamic mechanical analysis. The increased adhesion between the glass fibers and PP matrix observed with SEM resulted in an improvement of the mechanical and dynamic mechanical properties of the composites. Coupling achieved with the copolymer poly(propylene‐g‐maleic anhydride) (PP‐g‐MA) proved to be the most successful compared with 3‐aminopropyltrimethoxysilane and 3‐aminopropyltriethoxysilane. The combination of PP‐g‐MA with the silanes resulted in further property improvements because of the ability of the MA groups to react with the amino groups of the silanes. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 701–709, 2001  相似文献   

18.
In this work, we undertook a comparative study of the dynamic dielectric analysis of two unidirectional epoxy composites: flax‐fiber‐reinforced epoxy and flax/carbon‐fiber‐reinforced epoxy (FCFRE). In both composites, three relaxation processes were identified. The first one is the water dipoles polarization imputed to the presence of polar water molecules in flax fiber. The second relaxation process associated with conductivity occurs as a result of the carriers charges diffusion noted for high temperature above glass transition and low frequencies. As for the third dielectric relaxation associated with the interfacial polarization effect is attributable to the accumulation of charges at the fibers/matrix interface. The presence of two carbon plies in the reinforcement gives rise to two interfacial polarization effects in the FCFRE composite. The analysis of the Maxwell–Wagner–Sillars and the water dipoles polarizations using the Havriliak–Negami model revealed that the presence of two plies of carbon can locally decrease the adhesion of flax fibers in the matrix. This analysis was supported by the thermal properties using a differential scanning calorimety and the mechanical properties using a short beam shear test. POLYM. COMPOS., 241–253, 2016. © 2014 Society of Plastics Engineers  相似文献   

19.
This article presents the results of a study of the processing and physicomechanical properties of environmentally friendly wood‐fiber‐reinforced poly(lactic acid) composites that were produced with a microcompounding molding system. Wood‐fiber‐reinforced polypropylene composites were also processed under similar conditions and were compared to wood‐fiber‐reinforced poly(lactic acid) composites. The mechanical, thermomechanical, and morphological properties of these composites were studied. In terms of the mechanical properties, the wood‐fiber‐reinforced poly(lactic acid) composites were comparable to conventional polypropylene‐based thermoplastic composites. The mechanical properties of the wood‐fiber‐reinforced poly(lactic acid) composites were significantly higher than those of the virgin resin. The flexural modulus (8.9 GPa) of the wood‐fiber‐reinforced poly(lactic acid) composite (30 wt % fiber) was comparable to that of traditional (i.e., wood‐fiber‐reinforced polypropylene) composites (3.4 GPa). The incorporation of the wood fibers into poly(lactic acid) resulted in a considerable increase in the storage modulus (stiffness) of the resin. The addition of the maleated polypropylene coupling agent improved the mechanical properties of the composites. Microstructure studies using scanning electron microscopy indicated significant interfacial bonding between the matrix and the wood fibers. The specific performance evidenced by the wood‐fiber‐reinforced poly(lactic acid) composites may hint at potential applications in, for example, the automotive and packaging industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4856–4869, 2006  相似文献   

20.
The mutual irradiated aramid fibers in 1,4‐dichlorobutane was ammoniated by ammonia/alcohol solution, in an attempt to improve the interfacial properties between aramid fibers and epoxy matrix. Scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), dynamic contact angle analysis (DCA), interfacial shear strength (IFSS), and single fiber tensile testing were carried out to investigate the functionalization process of aramid fibers and the interfacial properties of the composites. Experimental results showed that the fiber surface elements content changed obviously as well as the roughness through the radiation and chemical reaction. The surface energy and IFSS of aramid fibers increased distinctly after the ammonification, respectively. The amino groups generated by ammonification enhanced the interfacial adhesion of composites effectively by participating in the epoxy resin curing. Moreover, benefited by the appropriate radiation, the tensile strength of aramid fibers was not affected at all. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44924.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号