首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multidrug resistance caused by ATP binding cassette transporter P‐glycoprotein (P‐gp) through extrusion of anticancer drugs from the cells is a major cause of failure in cancer chemotherapy. Previously, selenazole‐containing cyclic peptides were reported as P‐gp inhibitors and were also used for co‐crystallization with mouse P‐gp, which has 87 % homology to human P‐gp. It has been reported that human P‐gp can simultaneously accommodate two to three moderately sized molecules at the drug binding pocket. Our in silico analysis, based on the homology model of human P‐gp, spurred our efforts to investigate the optimal size of (S)‐valine‐derived thiazole units that can be accommodated at the drug binding pocket. Towards this goal, we synthesized varying lengths of linear and cyclic derivatives of (S)‐valine‐derived thiazole units to investigate the optimal size, lipophilicity, and structural form (linear or cyclic) of valine‐derived thiazole peptides that can be accommodated in the P‐gp binding pocket and affects its activity, previously an unexplored concept. Among these oligomers, lipophilic linear ( 13 ) and cyclic trimer ( 17 ) derivatives of QZ59S‐SSS were found to be the most and equally potent inhibitors of human P‐gp (IC50=1.5 μM ). As the cyclic trimer and linear trimer compounds are equipotent, future studies should focus on noncyclic counterparts of cyclic peptides maintaining linear trimer length. A binding model of the linear trimer 13 within the drug binding site on the homology model of human P‐gp represents an opportunity for future optimization, specifically replacing valine and thiazole groups in the noncyclic form.  相似文献   

2.
In this study, the effects of batch processing conditions (foaming time and temperature) and blend composition as well as the effect of incorporating wood fiber into the blends on the crystallinity, sorption behavior of CO2, void fraction, and cellular morphology of microcellular foamed high‐density polyethylene (HDPE)/polypropylene (PP) blends and their composites with wood fiber were studied. Blending decreased the crystallinity of HDPE and PP and facilitated microcellular foam production in blend materials. The void fraction was strongly dependent on the processing conditions and on blend composition. Foamed samples with a high void fraction were not always microcellular. The addition of wood fiber inhibited microcellular foaming. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2842–2850, 2003  相似文献   

3.
Poly(ethylene terephthalate) bottle‐grade (BG) waste was converted into spinnable chips and spun on a laboratory‐scale melt‐spinning apparatus into filaments. Virgin fiber‐grade (FG) polyester chips were blended with BG waste during melt spinning so that the influence of blending on the fiber properties could be studied. Subsequently, the scaling‐up of the process was carried out in a polyester recycling plant so that staple fibers could be obtained. In this part of the study, the spinning of blends of BG waste and FG waste was carried out. The BG waste was found to be superior feed stock for melt processing. Fibers with unique properties were obtained from the BG waste. Staple fibers obtained by the blending of FG and BG waste showed properties different from those of fibers spun from BG waste alone. This study also showed that using blends of BG and FG waste could improve the melt processing and staple‐fiber properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3536–3545, 2003  相似文献   

4.
In this study, electrospinning was used to fabricate ethyl–cyanoethyl cellulose [(E‐CE)C] fiber from a solution of (E‐CE)C/tetrahydrofuran. The diameter of the thinnest fiber fabricated during the electrospinning was about 200 nm. It was found that the diameters of the fibers and their distribution depend on the processing parameters and properties of the solution, such as viscosity, temperature, and concentration, for example. The morphology of the fiber was also observed by SEM. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 242–246, 2004  相似文献   

5.
Hydrolysis and solubilization of corn gluten were performed using a commercial protease preparation Neutrase. The effects of substrate concentration, enzyme concentration, temperature, pH and hydrolysate amount on the degree of hydrolysis and solubility of corn gluten were investigated depending on processing time. Trials were conducted in a batch reactor and degrees of hydrolysis were computed using a pH‐stat method. Results show that solubility and degree of hydrolysis were almost linearly related in all process conditions applied except in the case of hydrolysate addition. Optimum conditions for hydrolysis and solubilization were obtained as 10 g L?1 protein concentration, 4 mL L?1 enzyme concentration, 45 °C and pH 6.5. The mechanism of the kinetics was explained by taking into consideration association binding between the enzyme and substrate. The kinetics of hydrolysis and solubilization for all experiments performed were represented by exponential association equations that have not been used in the literature before. Also, to illustrate the effect of process variables on hydrolysis and solubilization, some modelling studies were performed. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
A comparison is made of the predictions of one‐dimensional mathematical model simulations of dry spinning based on Newtonian and viscoelastic constitutive equations for the spin dope. The viscoelastic model is based upon a modified Giesekus constitutive equation with a temperature and composition‐dependent relaxation time. The simulation algorithm includes the effects of the glass transition on the expected solution viscosity and relaxation time behavior along the spinline. Predictions of axial velocity, tensile stress, and composition profiles for the two cases suggest the role of viscoelasticity in the locking‐in behavior associated with fiber solidification along the spinline. The effects of model parameters and processing conditions are also discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2136–2145, 2003  相似文献   

7.
Cationic polyacrylamides (c‐PAMs) bind to starch granules and decrease the temperature for the onset of gelatinization by 8°C. c‐PAM increases the binding of α‐amylase to cornstarch; the rate of cornstarch hydrolysis also increases. By analogy to previous work on the c‐PAM promoted hydrolysis of cellulose, it is proposed that the polymer reduces the charge on the surface of starch through a charge‐patch mechanism. Because both enzyme and substrate are negatively charged, the bound c‐PAM reduces the charge repulsion experienced by the approaching enzyme, which leads to stronger enzyme‐substrate binding and faster hydrolysis. Overall, the c‐PAM reduces enzyme dose by up to 62% under the conditions used. There is a mirror image relationship between the viscosity of the medium and the hydrolysis rate, which allows optimization of these parameters with enzyme and c‐PAM dosage. Low c‐PAM levels increase viscosity by agglomerating the substrate, but the viscosity drops at higher c‐PAM concentration. © 2012 American Institute of Chemical Engineers AIChE J, 59: 79–83, 2013  相似文献   

8.
Ab initio calculations at HF, MP2 levels of theory with 6‐311G* basis set in combination with counterpoise procedure for BSSE correction have been performed on difluoroamine clusters consisting of up to four molecules. The dimer, trimer and tetramer were all found to exhibit two minima. There are two types of clusters: cyclic and chain. The corrected bond energies are 9.19, 19.22 and 33.67 kJ/mol at the MP2/6‐311G*//HF/6‐311G* level for the more stable dimer, trimer and tetramer, respectively. The contribution of cooperative effect to the interaction energy is quite significant in the cyclic clusters, but negligible in the chain ones. There exist H‐bonds which involve six and eight F⋅⋅⋅H contacts at ca. 0.23–0.24 nm in cyclic trimer and cyclic tetramer, respectively. The intermolecular interaction is an exothermic process under 400.0 K accompanied by a decrease in the probability of complex formation, and the interactions become weak as temperature increases.  相似文献   

9.
During the cure of thermosetting polymer composites, the presence of reinforcing fibers significantly alters the resin composition in the vicinity of the fiber surface via several microscale processes, forming an interphase region with different chemical and physical properties from the bulk resin. The interphase composition is an important parameter that determines the micromechanical properties of the composite. Interphase development during processing is a result of the mass‐transport processes of adsorption, desorption, and diffusion near the fiber surface, which are accompanied by simultaneous cure reactions between the resin components. Due to complexities of the molecular‐level mechanisms near the fiber surface, few studies have been carried out on the prediction of the interphase evolution as function of the process parameters. To address this void, a kinetics model was developed in this study to describe the coupled mass‐transfer and reaction processes leading to interphase formation. The parameters of the model were determined for an aluminum fiber/diglycidyl ether of bisphenol‐A/bis(p‐aminocyclohexyl)methane resin system from available experimental data in the literature. Parametric studies are presented to show the effects of different governing mechanisms on the formation of the interphase region for a general fiber–resin system. The interphase structure obtained from the model may be used as input data for the prediction of the overall composite properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3220–3236, 2003  相似文献   

10.
The effects of organic cosolvents on the synthesis of ampicillin from phenylglycine methyl ester (PGME) and 6‐amino penicillanic acid (6‐APA) using immobilized Bacillus megaterium penicillin G acylase have been examined. Several cosolvents were tested for their influence on the enzyme in terms of enzyme stability and hydrophobicity. Among the cosolvents tested, ethylene glycol was found to increase the yield of ampicillin by 39–50%. The effects of ethylene glycol on the pKa of PGME, the hydrolysis of ampicillin and PGME, and synthetase/amidase and esterase/amidase ratios were also studied. Experimental data indicated that ethylene glycol inhibited more the hydrolysis of the ampicillin than the hydrolysis of the PGME and the synthetase/amidase ratio varied from 0.2 to 0.88 when the concentration (v/v) of the cosolvent increased from 0 to 40%. The enhancement of the synthesis yield was mainly caused by the reduction in the hydrolysis of acyl donor (PGME) and product (ampicillin) in the water–cosolvent system. © 2003 Society of Chemical Industry  相似文献   

11.
Supercritical Carbon Dioxide (SC CO2) is used as a reaction/processing medium in the fabrication of fiber‐reinforced composite materials. SC CO2 allows resin (reactive monomer), to penetrate inside the fibers themselves, partitioning into the amorphous regions of the fiber. The crystal structure then templates polymerization of matrix within the fiber. This process produces a composite that exhibits ultralong‐range order from the nanoscale reinforcement of crystals to the macroscale fiber reinforcement of matrix. In addition, SC CO2 lowers resin viscosity and aids in wetting out Nylon 6,6 fiber reinforcement in a process similar to reaction injection molding (RIM) or resin transfer molding (RTM). This article will discuss the fabrication technique in detail, including process parameters and the structure of resulting composites and morphology of modified fibers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1600–1607, 2003  相似文献   

12.
Poly(vinyl chloride) PVC pyrolysis and hydrolysis are conducted in a fixed bed reactor and in an autoclave, respectively, under different operating conditions such as the temperature and time. The product distribution is studied. For the PVC pyrolysis process, the main gas product is HCl (55% at 340°C), there is 9% hydrocarbon gas (C1–C5), the liquid product fraction is about 5% (at 340°C), and the solid residue fraction is about 31% (at 340°C). For the hydrolysis process, the main gas product is HCl (55.8% at 240°C) and the solid residue is about 49.6% (at 240°C). The pyrolysis liquid product is analyzed by using gas chromatography with magic‐angle spinning. Aromatic hydrocarbons are the main class (90%), of which the major part is benzene (33%). The residue produced through pyrolysis and hydrolysis is investigated by high‐resolution solid‐state 13C‐NMR. These details revealed by the high‐field NMR spectra provide importmant information about the chemical changes in the PVC pyrolysis and hydrolysis process. The mechanism of PVC hydrolysis dechlorination is also discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3252–3259, 2003  相似文献   

13.
Flow‐induced orientation of the conductive fillers in injection molding creates parts with anisotropic electrical conductivity where through‐plane conductivity is several orders of magnitude lower than in‐plane conductivity. This article provides insight into a novel processing method using a chemical blowing agent to manipulate carbon fiber (CF) orientation within a polymer matrix during injection molding. The study used a fractional factorial experimental design to identify the important processing factors for improving the through‐plane electrical conductivity of plates molded from a carbon‐filled cyclic olefin copolymer (COC) containing 10 vol% CF and 2 vol% carbon black. The molded COC plates were analyzed for fiber orientation, morphology, and electrical conductivity. With increasing porosity in the molded foam part, it was found that greater out‐of‐plane fiber orientation and higher electrical conductivity could be achieved. Maximum conductivity and fiber reorientation in the through‐plane direction occurred at lower injection flow rate and higher melt temperature. These process conditions correspond with foam flow during filling of the mold cavity, indicating the importance of shear stress on the effectiveness of a fiber being rotated out‐of‐plane during injection molding. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

14.
A convenient method of preparing chelating fiber with amine groups on the fiber surface was developed. The precursor polymer of Poly(N‐vinylformamide/acrylonitrile) (P(NVF/AN)) was synthesized via solution polymerization, using N‐vinylforaimde as a functional monomer. The solution of P(NVF/AN) was spun through a wet spinning method and the precursor fiber was hydrolyzed in the hydrochloric acid solution to convert formamide moieties to the corresponding amine. The influence of hydrolytic conditions on hydrolysis degree, such as hydrolysis temperature, hydrolysis time, and hydrochloric acid concentrations were examined experimentally. The hydrolysis degree of the precursor fiber was evaluated by potentiometric and conductometric titrations. The changes of the structure and properties of the fibers were characterized through infrared spectroscopy, scanning electron microscopy, and tensile strength tester. The results showed that the hydrolysis degree was limited in acidic hydrolysis because of the electrostatic repulsion among the cationic amine groups and proton. The hydrolysis degree of precursor fiber reached nearly 60%, and the chelating fiber remained the adequate mechanical properties under the suitable hydrolysis condition. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
A study of filament‐wound glass fiber/epoxy composite tubes under biaxial fatigue loading is presented. The focus is placed on fatigue lives of tubular specimens under tension/torsion biaxial loading at low cycle up to 100,000 cycles. Filament‐wound glass‐fiber/epoxy tubular specimens with three different lay‐up configurations, namely [±35°]n, [±55°]n, and [±70°]n lay‐ups, are subjected to in‐phase proportional biaxial cyclic loading conditions. The effects of winding angle and biaxiality ratio on the multiaxial fatigue performance of composites are discussed. Specimens are also tested under two cyclic stress ratio: R = 0 and R = −1. The experimental results reveal that both tensile and compressive loading have an influence on the multiaxial fatigue strength, especially for [±35°]n specimens. A damage model proposed in the literature is applied to predict multiaxial fatigue life of filament‐wound composites and the predictions are compared with the experimental results. It is shown that the model is unsuitable for describing the multiaxial fatigue life under different cyclic stress ratios. POLYM. COMPOS. 28:116–123, 2007. © 2007 Society of Plastics Engineers  相似文献   

16.
To reduce the pollution of air by minimizing evaporative emissions from fuel tanks, new plastic fuel tanks made of materials with excellent barrier properties have to be developed. Single‐layer polyamide 6 tanks are one option to meet the requested low‐hydrocarbon permeation rates for motorcycle vehicle tanks. Recently, some problems with respect to deposits in polyamide 6 tanks, blocked nozzles, tubing, and gasoline filters were observed. Thus, samples (precipitates) were taken from unused tanks after conditioning as well as of used tanks and filters after being in contact with gasoline for some time. By investigating the precipitates and deposits by means of infrared (IR) spectroscopy, the main constituents were identified to be cyclic caprolactam oligomers. Additional investigations on the extracted samples by mass spectroscopy allowed us to attribute specific features of the IR spectra to the individual cyclic oligomers (dimer, trimer, and tetramer). In addition, we could show that the crystalline precipitates and deposits in the fuel systems of used vehicles consist of mixtures of the cyclic dimer, trimer, tetramer, and even pentamer of caprolactam with varying contributions of the individual oligomers in dependence of the history of the part. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The effectiveness of soaking in aqueous ammonia (SAA) as a pretreatment method for the conversion of soybean fiber to ethanol via simultaneous saccharification and fermentation (SSF) was investigated. Insoluble fiber is a co-product from oil and protein extraction using two-stage, countercurrent, enzyme-assisted, aqueous extraction processing of full-fat soybean flakes (FFSF) and extruded FFSF. The fiber fractions were soaked in 15 wt% aqueous ammonia at 1:10 solid-to-liquid ratio. The effects of operating variables, including treatment times (6, 12, and 24 h), treatment temperatures (60 and 80 °C), and cellulase loadings (15 and 60 FPU/g-glucan) on the degree of enzymatic hydrolysis were determined. The best SAA conditions were 80 °C for 12 h followed by an enzyme loading of 15 FPU/g-glucan, which produced a 152-mg/g glucose yield after 48 h of hydrolysis. This was 8.7 times the amount produced from the same fiber not pretreated with SAA. The glucose yield increased to 381 mg/g when fiber obtained from extruded FFSF was submitted to SAA. SAA (80 °C, 12 h) on extruded fiber subjected to SSF increased ethanol yield from 0.06 g of ethanol/g [40% of theoretical yield] (for non SAA pretreated fiber) to 0.25 g of ethanol/g [92% of theoretical yield]. The combination of extrusion and SAA was an efficient means for converting the fiber-rich soybean fraction into ethanol.  相似文献   

18.
To determine three‐dimensional fiber orientation states in injection‐molded short‐fiber composites, a confocal laser scanning microscope (CLSM) is used. Since the CLSM optically sections the specimen, more than two images of the cross sections on and below the surface of the composite can be obtained. Three‐dimensional fiber orientation states can be determined by using geometric parameters of fiber images obtained from two parallel cross sections. For experiments, carbon‐fiber‐reinforced polystyrene is examined by the CLSM and geometric parameters of fibers on each cross‐sectional plane are measured by an image analysis. In order to describe fiber orientation states compactly, orientation tensors are determined at different positions of the prepared specimen. Three‐dimensional orientation states are obtained without any difficulty by determining the out‐of‐plane angles utilizing fiber images on two parallel planes acquired by the CLSM. Orientation states are different at different positions and show the shell–core structure along the thickness of the specimen. Fiber orientation tensors are predicted by a numerical analysis and the numerically predicted orientation states show good agreement with measured ones. However, some differences are found at the end of cavity. They may result from the fountain flow effects, which are not considered in the numerical analysis. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 500–509, 2003  相似文献   

19.
This work involves the development of novel glass fiber–reinforced composite materials containing a commercially available epoxy resin, a phosphate‐based intumescent, and inherently flame‐retardant cellulosic (Visil, Sateri) and phenol–formaldehyde (Kynol) fibers. The intumescent and flame‐retardant fiber components were added both as additives in pulverized form and fiber interdispersed with the intumescent as a fabric scrim for partial replacement of glass fiber. Thermal stability, char formation, and flammability properties of these novel structures were studied by thermal analysis, limiting oxygen index, and cone calorimetry. The results are discussed in terms of effect of individual additive component on thermal degradation/burning behavior of neat resin. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2511–2521, 2003  相似文献   

20.
The effect of chemical modification of both fiber and matrix on melt rheological behavior of intimately mixed short sisal–glass hybrid fiber‐reinforced low‐density polyethylene composites was studied with an Instron capillary rheometer. The variations of melt viscosity with different shear rate and shear stress values for different temperatures were studied. A temperature range of 130 to 150°C and shear rates of 16.4 to 5468 s?1 were chosen for the analysis. Chemical modifications with stearic acid, maleic anhydride, silane, and peroxides were tested for their ability to improve the interaction between the matrix and fiber. The viscosity of the hybrid composites increases with every chemical modification. In the case of peroxide‐treated composites, the increase can be attributed to the peroxide‐induced grafting of the polyethylene matrix to the fiber surface and to the crosslinking of the polyethylene matrix. These phenomena are both activated by temperature, whereas temperature causes a reverse effect for all other chemical modifications. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 443–450, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号