首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
We investigated the thermal decomposition behavior of three groups of polyesterimides that had been synthesized from different compositions of monomers that were added in different. We characterized these polymers with thermogravimetric analysis (TGA) and calculated the apparent activation energy (Ea) associated with the thermal decomposition process by the Ozawa method. The results showed that the Ea of the polyesterimides was correlated with the length of the methylene spacer and the content of the 4,4′‐dihydroxybenzophenone monomer. The polyesterimide with four methylene spacers in the main chain had a higher Ea than that with six methylene spacers. The polyesterimide with a higher 4,4′‐dihydroxybenzophenone content provided better thermal stability. The Ea of the polyesterimides also depended on the sequence in which the monomers were added during the copolycondensation process. The Ea of these polyesterimides followed the order: p‐hydroxybenzoic acid added first > p‐hydroxybenzoic acid mixed 4,4′‐dihydroxybenzophenone adding > 4,4′‐dihydroxybenzophenone added first. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2467–2472, 2005  相似文献   

2.
The thermal decomposition mechanism of maleated poly(3‐hydroxybutyrate) (PHB) was investigated by FTIR and 1H NMR. The results of experiments showed that the random chain scission of maleated PHB obeyed the six‐membered ring ester decomposition process. The thermal decomposition behavior of PHB and maleated PHB with different graft degree were studied by thermogravimetry (TGA) using various heating‐up rates. The thermal stability of maleated PHB was evidently better than that of PHB. With increase in graft degree, the thermal decomposition temperature of maleated PHB gradually increased and then declined. Activation energy Ea as a kinetic parameter of thermal decomposition was estimated by the Flynn‐Wall‐Ozawa and Kissinger methods, respectively. It could be seen that approximately equal values of activation energy were obtained by both methods. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1789–1796, 2002; DOI 10.1002/app.10463  相似文献   

3.
The kinetics of the thermal decomposition of chalcopyrite concentrate was investigated by means of thermal analysis techniques, Thermogravimetry/Derivative thermogravimetry (TG/DTG) under ambient air conditions in the temperature range of 0–900°C with heating rates of 2, 5, 10, 15, and 20°C min?1. TG and DTG measurements showed that the thermal behavior of chalcopyrite concentrate shows a two-step decomposition. The decomposition mechanism was confirmed using X-ray diffraction (XRD), Scanning Electron Microscope (SEM)/energy-dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) analyses. Kinetic parameters were determined from the TG and DTG curves for steps I and II by using two model-free (isoconversional) methods—Flyn–Wall–Ozowa (FWO) and Kissinger–Akahira–Sunose (KAS). The kinetic parameters consisting of Ea, A, and g(α) models of the materials were determined. The average activation energies (Ea) obtained from both models for the decomposition of chalcopyrite concentrate were 72.55 and 300.77 kJ mol?1 and the pre-exponential factors (A) were 15.07 and 29.39 for steps I and II, respectively. The most probable kinetic model for the decomposition of chalcopyrite concentrate is an first-order mechanism, i.e., chemical reaction [g(α) = (?ln(1?α))], and an Avrami–Eroeyev equation mechanism, i.e., nucleation and growth for n = 2 [g(α) = (?ln(1?α)1/2)], for steps I and II, respectively.  相似文献   

4.
A novel and general kinetic rate equation combining ultraviolet‐induced (UV‐induced) curing and thermal curing was successfully derived from the conventional thermal‐kinetic rate equation. This proposed novel kinetic rate equation can be applicable to the curing system either simultaneously or individually by UV‐induced and thermal cure methods. This general kinetic rate equation is composed of the reaction order n, activation energy Ea, curing temperature T, energy barrier of photoinitiation EQ, intensity of UV radiation Q, concentration of photoinitiator [I], and a few other parameters. The proposed equation was supported by experimental data based on the curing systems of 4,4′‐bismaleimidodiphenylmethane (BMI) and 2,2‐bis(4‐(4 maleimido phenoxy) phenyl propane (BMIP). The BMI and BMIP systems were isothermally cured at various temperatures, or simultaneously cured with varying intensity of UV radiation (wavelength 365 nm). Conversion levels for the various cured samples were subsequently measured with a FTIR spectrometer. The reaction order n = 1.2, activation energy Ea = 40,800 J/mol, and EQ = 7.5 mW/cm2 were obtained for curing BMI system. The reaction order n = 1.3, activation energy Ea = 53,000 J/mol, and EQ = 9.1 mW/cm2 were obtained for curing BMIP system. The values of n and Ea in the same curing system (BMI or BMIP) are irrespective of the curing method (either simultaneously or individually by UV‐induced and thermal cure methods). The salient results of this study show that UV radiation only enhances the initiation rate and UV ration do not influence the activation energy Ea. The experimental results are reasonably well represented by these semi‐empirical expressions.© 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The thermal polymerization of four structurally different bismaleimide resins, prepared by reacting maleic anhydride with four aromatic diamines, viz., 4,4′-diaminodiphenyl methane, 4,4′-diamino diphenyl ether, 4,4′-diamino diphenyl sulfone, and 3,3′-diamino diphenyl sulfone, was followed by differential scanning calorimetry (DSC). The enthalpy change and the kinetic constants for the polymerization reactions were evaluated from the DSC curves. Thermal stability of the cured polymers was studied by thermogravimetry (TG). The kinetic parameters, viz., activation energy E and preexponential factor A, for the thermal decomposition of the cured bismaleimides were calculated from the TG curves using three nonmechanistic integral equations. The kinetic constants (E and A) follow a trend similar to the thermal stability of the polymers.  相似文献   

6.
In this work, we investigated the thermal degradation behavior of segmented polyurethane (PUR) elastomers before and after UV irradiation. The thermal degradation of PUR elastomers was studied over the temperature range of 25–600°C in an atmosphere of nitrogen using thermal gravimetric analysis (TGA). Four series of PUR elastomers derived from poly(oxytetramethylene)glycol (PTMO) of 1000 and 2000 molecular weight and poly(caprolactone glycol) (PCL) of 1250 molecular weight, 4,4′‐diphenylmethane diisocyanate (MDI), and 4,4′‐dicyclohexylmethane diisocyanate (H12MDI) and 1,4‐butanediol as an chain extender were synthesized by the prepolymer method. The derivative thermogravimetric (DTG) peaks observed in the experiments indicated that PUR elastomers degraded through two steps. We attributed the first step to degradation of the hard segment. The second degradation step could be ascribed to degradation of the soft segment. We found that the PUR elastomers based on poly(ester polyol) and aromatic diisocyanate exhibit better thermal stability than that of PUR elastomers based on the poly(ether polyol) soft segment in both steps of degradation. The thermal degradation is more prevalent in PUR elastomers based on cycloaliphatic diisocyanate. The higher values of the temperature of initial decomposition (Ti) indicate a higher thermal stability of UV‐exposed elastomers on the beginning of degradation. This may be due to the formation of a crosslinking structure in the presence of UV irradiation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 864–873, 2001  相似文献   

7.
Nanozirconia (nano‐ZrO2) was prepared by the sol–gel method and incorporated into poly(methyl methacrylate) (PMMA) by the in situ bulk polymerization of methyl methacrylate. The structure of the nano‐ZrO2 was confirmed by X‐ray diffraction (XRD), transmission electron microscopy, and Fourier transform infrared (FTIR) spectroscopy. The structure of the nano‐ZrO2 nanocomposites were studied by differential scanning calorimetry, FTIR spectroscopy, XRD, and scanning electron microscopy, and the results show that there were interactions between the nanoparticles and the polymer. The influence of the nano‐ZrO2 on the thermal stability of PMMA was investigated by thermogravimetric analysis (TGA). The results indicate that nano‐ZrO2 enhanced the thermal stability of the PMMA/nano‐ZrO2 nanocomposites. The effects of the heating rate in dynamic measurements (5–30°C/min) on kinetic parameters such as apparent activation energy (Ea) in TGA both in nitrogen and air were investigated. The Kissinger method was used to determine Ea for the degradation of pure PMMA and the PMMA/nano‐ZrO2 nanocomposites. The kinetic results show that the values of Ea for the degradation of the nanocomposites were higher than that of pure PMMA in air. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
The elastomeric nanocomposites based on organomontmorillonite (OMMT) and styrene‐(ethylene‐butylene)‐styrene (SEBS) thermoplastic elastomer were prepared by melt processing using maleic anhydride grafted SEBS (SEBS‐g‐MA) as compatibilizer. Thermo‐oxidative decomposition behavior of the neat components and the nanocomposites were investigated using thermogravimertic analysis (TGA) in air atmosphere. The isoconversional method is employed to study the kinetics of thermo‐oxidative degradation. The heating modes and the composition of nanocomposites were found to affect the kinetic parameters (Ea, lnA and n). The Ea and lnA values of SEBS, OMMT, and their composites are much higher under dynamic heating than under isothermal heating. The reaction order (n) of OMMT was lower than those of SEBS and their composites. The obtained TG profiles and calculated kinetic parameters indicated that the incorporation of OMMT into SEBS significantly improved the thermal stability both under dynamic heating and under isothermal heating. The simultaneously obtained DSC data showed that the enthalpy of thermal decomposition decreased with OMMT loading. No significant change in the nonisothermal and isothermal stability of the nanocomposites with addition of SEBS‐g‐MA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
A polyimide (PI) based on benzophenone‐3,3′,4,4′‐tetracarboxylic acid dianhydride, toluene diisocyanate (TDI), and 4,4′‐methylenebis (phenyl isocyanate) (MDI) has been synthesized via a one‐step polycondensation procedure. The resulting PI possessed excellent thermal stability with the glass transition temperature (Tg) 316°C, the 5% weight loss temperature (T5%) in air and nitrogen 440.4°C and 448.0°C, respectively. The pyrolysis behaviors were investigated with dynamic thermogravimetric analysis (TGA), TGA coupled with Fourier transform infrared spectrometry (TGA–FTIR) and TGA coupled with mass spectrometry (TGA–MS) under air atmosphere. The results of TGA–FTIR and TGA–MS indicated that the main decomposition products were carbon dioxide (CO2), carbonic oxide (CO), water (H2O), ammonia (NH3), nitric oxide (NO), hydrogen cyanide (HCN), benzene (C6H6), and compounds containing NH2, C?N, N?C?O or phenyl groups. The activation energy (Ea) of the solid‐state process was estimated using Ozawa–Flynn–Wall (OFW) method which resulted to be 143.8 and 87.8 kJ/mol for the first and second stage. The pre‐exponential factor (A) and empirical order of decomposition (n) were determined by Friedman method. The activation energies of different mechanism models were calculated from Coats–Redfern method. Compared with the activation energy values obtained from the OFW method, the actual reaction followed a random nucleation mechanism with the integral form g(α) = ?ln(1 ? α). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40163.  相似文献   

10.
The Manganese thioglycolate (Mn‐TG) end capped poly(ε‐caprolactone) (PCL) was prepared by ring opening polymerization at 160°C under inert atmosphere in the presence of Mn‐TG as an initiator and stannous octoate as a catalyst by bulk polymerization technique. The prepared PCL was investigated using various analytical tools to assess its physico‐chemical properties. The chemical structure of PCL was confirmed by Fourier transform infrared and nuclear magnetic resonance spectroscopic techniques. The particle size and morphology of the sample was examined by atomic force microscopy and TEM. The melting and crystallization behavior of PCL was analyzed using differential scanning calorimetry. The thermal property of PCL was assessed with the help of thermogravimetric analysis (TGA). The non‐isothermal crystallization kinetics was carried out to understand the nucleation type and crystal growth for the prepared PCL. The energy of activation (Ea) for crystallization process of PCL was determined. The thermal degradation of PCL and its Ea was determined under non‐isothermal condition using important kinetic models. POLYM. ENG. SCI., 59:633–642, 2019. © 2018 Society of Plastics Engineers  相似文献   

11.
The thermal degradation behavior of the blend based on polylactide (PLA) and poly(1,2‐propanediol 2‐carboxyethyl phenyl phosphinate) (PCPP) was investigated by the thermogravimetric analysis (TGA). Thermal degradation activation energies (Ea) of neat PLA and PLA/15% PCPP blend were calculated via the Flynn–Wall–Ozawa method. The Ea of the blends increased with the addition of PCPP increasing when the conversion was higher than 10%. In addition, the appropriate conversion models for the thermal degradation process of PLA and PLA/15% PCPP were studied via the Criado method. At the same time, the main gaseous decomposition products of PLA and its blend were identified by TGA/infrared spectrometry (TGA–FTIR) analysis. And it revealed that the PCPP improved the flame‐retardant property of PLA via altering the release of the flammable gas and nonflammable gas. Moreover, the PCPP improved the flame‐retardant property of PLA by inhibiting exothermic oxidation reactions in the combustion, which was further proved by pyrolysis–gas chromatography–mass spectrometry analysis. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40480.  相似文献   

12.
After a series of investigations on the durable flame‐retardant finishes, it was thought to be important to study these durable flame‐retardant finished materials from the thermal analytical standpoint. Accordingly, cotton fabric was finished with N‐methylol dialkyl phosphonopropionamide (Pyrovatex C) by thermofixation and tetrakis (hydroxymethyl) phosphonium sulfate (THPS) precondensate by ammonia cure (Proban), as well as with THPS monomer by heat cure under various conditions, and subjected to the thermogravimetry (TG) to observe thermal degradation behaviors and obtain apparent activation energy (Ea). TG curves of Proban‐finished samples showed the largest shift to lower temperatures with a steep slope; thermofixed THPS‐finished sample gave a smaller shift with similar steep slope, whereas Pyrovatex‐finished samples exhibited a similar shift but with a gradual slope. Ea versus residual ratio curves led us to conclude that C N bond‐rich Proban polymer requires the highest Ea and decomposes with considerable rapidity, whereas ethylene‐bond‐rich Pyrovatex‐finished samples with melamine crosslinking decompose gradually with the lowest Ea. As for the relationship between flame retardance and Ea distribution in the process of thermal degradation, typical differences among the above three kinds of finished samples were found, which are compared and discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 975–987, 1999  相似文献   

13.
The terpolymers (2,4‐DHPOF) have been synthesized by the condensation of 2,4‐dihydroxypropiophenone with oxamide and formaldehyde in the presence of 2M HCl as catalyst with varying proportions of reactants. Terpolymer composition has been determined on the basis of their elemental analysis. The terpolymer has been characterized by UV‐visible, IR, and 1H NMR spectra. The thermal decomposition behavior of some new terpolymers was studied using thermogravimetric analysis in air atmosphere at heating rate of 10°C/min. Thermal decomposition curves are discussed with careful attention to minute details. The Freeman–Carroll and Sharp–Wentworth methods have been used to calculate activation energy and thermal stability. Thermal activation energy (Ea) calculated with the help of these methods are in agreement with each other. Thermodynamic parameters such as free energy change (ΔF), entropy change (ΔS), apparent entropy change (S*), and frequency factor (z) are also determined on the basis of the TG curves and by using data of the Freeman–Carroll method. The Freidman method evaluated the variation in the apparent activation energy changes by isoconversional (model‐free) kinetic methods. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Oligo{2,2′‐{1,4‐phenylenebis[nitrilomethylylidene]}bis(6‐methoxyphenol)} (OPNMMP) was synthesized from o‐vanillin and p‐phenylene diamine by oxidative polycondensation with NaOCl in an aqueous alkaline. Then, a new Schiff Base epoxy oligomer resin, OPNMMP–epichlorohydrine (EPC), was produced with EPC. The structures of the resulting compounds were confirmed by Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, 1H‐NMR, and 13C‐NMR. Further characterization processes were preformed by thermogravimetry (TG)–differential thermal analysis, gel permeation chromatography, and solubility testing. Also, the kinetics of the thermal decomposition of OPNMMP–EPC were investigated by thermogravimetric analysis. The TG curves showed that the thermal decomposition of OPNMMP–EPC occurred in one stage. The kinetic parameters related to the decomposition kinetics of OPNMMP–EPC were obtained from TG curves with the following methods: Friedman, Flynn–Wall–Ozawa, Kissinger, invariant kinetic parameter, and Coats–Redfern (CR), under an N2 dynamic atmosphere and different heating rates (5, 10, 15, and 20°C/min). The mechanism function and pre‐exponential factor were also determined by a master plots method. The apparent activation energies of the thermal decomposition were calculated from these methods for OPNMMP–EPC. The analysis of the results obtained by the CR and master plots methods showed that the decomposition mechanism of OPNMMP–EPC in N2 was a deceleration‐type mechanism. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
In this article, the kinetics of thermal decomposition of unsaturated maleic–phthalic polyester resins, flame‐retarded with zinc hydroxystannate, was studied by thermogravimetric analysis at different heating rates. At the first stage, it was found, on the basis of isoconversional analysis by the methods of Friedman and of Ozawa–Flynn–Wall, that the value of the (apparent) activation energy (E) characteristically changes in three steps during the degradation. Further kinetic studies using nonlinear regression methods revealed the best fits for both pristine and stabilized resins. It was observed that the course of E versus the degree of conversion (α) during degradation of zinc hydroxystannate‐containing resins (α > 0.8) was characterized by higher values of E—this phenomenon can be explained in terms of the flame‐retardation action of zinc hydroxystannate, which is believed to operate primarily in the condensed phase. At the next stage, kinetic analysis by the nonregression method was performed to find the kinetic model [f(α) function] of the decomposition process; hence, for pristine resin, the best fit was found for the Avrami–Yerofeeyev model (nuclei growth), and for stabilized samples, the nth‐order function with catalysis proved to be the best approximation. The obtained kinetic parameters in the form of E, the preexponential factor A, and the model function f(α) allow a prediction of the polyester resin's thermal behavior in an extrapolated range of degree of conversion, time, and temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2851–2857, 2003  相似文献   

16.
A new curing agent containing maleimide and biphenyl moieties (MIBP) was synthesized by the condensation polymerization of 4,4′-bismethoxymethylbiphenyl and N-(4-hydroxyphenyl)maleimide (HPM). The chemical structure was characterized with Fourier transform infrared (FTIR) spectroscopy, and the molecular weight of the new curing agent was determined by gel permeation chromatography. Curing reactions of O-cresol formaldehyde epoxy (CNE) resin with MIBP were investigated under nonisothermal differential scanning calorimetry, and the exotherm exhibited two overlapping exothermic peaks during the curing process; this was demonstrated by FTIR traces. The Flynn–Wall–Ozawa and Friedman methods were used to examine the kinetic parameters and the kinetic models of the curing processes of the CNE/MIBP mixtures. Both reactions turned out to be nth-order curing mechanisms. Values of the reaction order (n) = 1.42 and activation energy (Ea) = 91.2 kJ/mol were obtained for the first reaction of the curing of the CNE/MIBP system, and values of n = 1.11 and Ea = 78.7 kJ/mol were obtained for the second reaction. The thermal properties of the cured resin were measured with thermogravimetric analysis, and the results show a high glass-transition temperature (Tg = 155°C), good thermal stability (temperature at 10% weight loss, under nitrogen and in air, ≈ 400 and 408°C, respectively), and high char yield (temperature = 800°C, char residue = 44.5% under nitrogen). These excellent thermal properties were due to the introduction of the maleimide and biphenyl groups of MIBP into the polymer structure. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
The flame retardant effect of zinc sulphide (ZnS) in plasticised poly(vinyl chloride) (PVC‐P) materials was investigated. PVC‐P containing different combinations of additives such as 5% ZnS, 5% of antimony oxide (Sb2O3) and 5% of mixtures based on Sb2O3 and ZnS were compared. The thermal degradation and the combustion behaviour were studied using thermogravimetry (TG), coupled with FTIR (TG–FTIR) or with mass spectroscopy (TG–MS), and a cone calorimeter, respectively. A detailed and unambiguous understanding of the decomposition and release of the pyrolysis products was obtained using both TG–MS and TG–FTIR. The influence of ZnS, Sb2O3 and the corresponding mixtures on the thermal decomposition of PVC‐P was demonstrated. Synergism was observed for the combination of the two additives. The combustion behaviour (time to ignition, heat release, smoke production, mass loss, CO production) was monitored versus external heat fluxes between 30 and 75 kW m?2 with the cone calorimeter. Adding 5% of ZnS has no significant influence on the fire behaviour of PVC‐P materials beyond a dilution effect, whereas Sb2O3 works as an effective fire retardant. Synergism of ZnS and Sb2O3 allows the possibility of replacing half of Sb2O3 by ZnS to reach equivalent fire retardancy. © 2002 Society of Chemical Industry  相似文献   

18.
N‐(4‐Hydroxy phenyl) maleimide (HPMI) is prepared and is functionalized with acryloyl, methacryloyl, allyl, propargyl, and cyanate groups. The structural and thermal characterizations of the materials are done using FTIR, NMR, DSC, and TGA. Curing and degradation kinetics are performed using Flynn–Wall–Ozawa, Vyazovkin, and Friedman methods. Activation energies (Ea) for the polymerization of the synthesized monomers varied and are dependent on the nature of the functional group present in HPMI. The propargyl functionalized monomer shows the highest Ea values whereas the methacryloyl functionalized monomer shows the lowest Ea values. In the case of thermal degradation of the polymerized materials, the apparent Ea values for acryloyl, methacryloyl and cyanate functionalized materials are slightly higher than that of poly‐HPMI (PHPMI). The thermally cured allyl and propargyl functionalized materials show a different trend and may be attributed to the complications arising due to Claisen rearrangement reaction during the thermal curing. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39935.  相似文献   

19.
The kinetics of thermal degradation of thermotropic liquid crystalline poly(p‐oxybenzoate‐co‐ethylene‐2,6‐naphthalate) (PHB/PEN) with the monomer ratio of 60 : 40 and PEN in nitrogen was studied by dynamic thermogravimetry (TG). The kinetic parameters, including the activation energy Ea, the reaction order n, and the frequency factor ln(Z) of the degradation reaction for PHB/PEN (60 : 40) and PEN were analyzed by the single heating rate methods of Friedman and Chang. The effects of the heating rate and the calculating method on the thermostable and degradation kinetic parameters are systematically discussed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:3915–3920, 2004  相似文献   

20.
Trans‐1,4,5,8‐Tetranitro‐1,4,5,8‐Tetraazadecalin (TNAD), a cyclic nitroamine, has been studied with regard to the kinetics and mechanism of thermal decomposition, using thermogravimetry (TG), IR spectroscopy, and pressure differential scanning calorimetry (PDSC). The IR spectra of TNAD have also been recorded, and the kinetics of thermolysis has been followed by non‐isothermal TG. The activation energy of the solid‐state process was determined by using the Flynn‐Wall‐Ozawa method. Compared with the activation energy obtained from the Ozawa method, the reaction mechanism of the exothermic process of TNAD was classified by the Coats‐Redfern method as a nucleation and nuclear growth (Avrami equation 1) chemical reaction (α=0.30–0.60) and a 2D diffusion (Valensi equation) chemical reaction (α=0.60–0.90). Ea and ln A were established to be 330.14 kJ mol−1 and 29.93 (α=0.30–0.60) or 250.30 kJ mol−1 and 21.62 (α=0.60–0.90).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号