首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Water‐soluble polyphenol‐graft‐poly(ethylene oxide) (PPH‐g‐PEO) copolymers were prepared using grafting‐through methodology. Polyphenol chains were synthesized via enzymatic polymerization of phenols, and the graft chains were synthesized via living anionic polymerization of ethylene oxides. The polymers were characterized using gel permeation chromatography, static light scattering and 1H NMR, infrared and ultraviolet spectroscopies. The PPH‐g‐PEO graft copolymers are soluble in several common solvents, such as water, ethanol, N,N‐dimethylformamide, tetrahydrofuran and methylene dichloride. The solubility of the PPH‐g‐PEO graft copolymers is improved significantly compared with that of polyphenol. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
Amphiphilic ABA triblock copolymers of poly(ethylene oxide) (PEO) with methyl methacrylate (MMA) were prepared by atom transfer radical polymerization in bulk and in various solvents with a difunctional PEO macroinitiator and a Cu(I)X/N,N,N′,N″,N″‐pentamethyldiethylenetriamine catalyst system at 85°C where X=Cl or Br. The polymerization proceeded via controlled/living process, and the molecular weights of the obtained block copolymers increased linearly with monomer conversion. In the process, the polydispersity decreased and finally reached a value of less than 1.3. The polymerization followed first‐order kinetics with respect to monomer concentration, and increases in the ethylene oxide repeating units or chain length in the macroinitiator decreased the rate of polymerization. The rate of polymerization of MMA with the PEO chloro macroinitiator and CuCl proceeded at approximately half the rate of bromo analogs. A faster rate of polymerization and controlled molecular weights with lower polydispersities were observed in bulk polymerization compared with polar and nonpolar solvent systems. In the bulk polymerization, the number‐average molecular weight by gel permeation chromatography (Mn,GPC) values were very close to the theoretical line, whereas lower than the theoretical line were observed in solution polymerizations. The macroinitiator and their block copolymers were characterized by Fourier transform infrared spectroscopy, 1H‐NMR, matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry, thermogravimetry (TG)/differential thermal analysis (DTA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). TG/DTA studies of the homo and block copolymers showed two‐step and multistep decomposition patterns. The DSC thermograms exhibited two glass‐transition temperatures at ?17.7 and 92°C for the PEO and poly(methyl methacrylate) (PMMA) blocks, respectively, which indicated that microphase separation between the PEO and PMMA domains. SEM studies indicated a fine dispersion of PEO in the PMMA matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 989–1000, 2005  相似文献   

3.
Well‐defined polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐PS triblock copolymers were synthesized by atom‐transfer radical polymerization (ATRP), using C—X‐end‐group PEO as macroinitiators. The triblock copolymers were characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, and gel permeation chromatography. The experimental results showed that the polymerization was controlled/living. It was found that when the number‐average molecular weight of the macroinititors increased from 2000 to 10,000, the molecular weight distribution of the triblock copolymers decreased roughly from 1.49 to 1.07 and the rate of polymerization became much slower. The possible polymerization mechanism is discussed. According to the Cu content measured with atomic absorption spectrometry, the removal of catalysts, with CHCl3 as the solvent and kaolin as the in situ absorption agent, was effective. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2882–2888, 2000  相似文献   

4.
A series of amphiphilic graft copolymers, PE‐graft‐PEO, containing hydrophobic polyethylene (PE) as the backbone and hydrophilic poly(ethylene oxide) (PEO) as the side‐chain, have been synthesized by a novel route. The graft structure and the molecular weight, as well as the molecular weight distribution of the graft copolymer can easily be controlled. The molecular weight of the side‐chain PEO is proportional to the reaction time and the monomer concentration, which indicates the ‘living’ character of the anionic polymerization of ethylene oxide. The produced copolymers PE‐graft‐PEO were characterized by 1H NMR and DSC measurements. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
Poly(ethylene glycol) (PEG) is an important water‐soluble polymer, which is widely used in the biomedical field because of its good biodegradability, biocompatibility and permeability. It is usually synthesized by anionic polymerization of ethylene oxide but side reactions lead to the formation of some oligomers. High molecular weight PEG can be obtained, however, through coordinated anionic polymerization. Recently a novel controlled anionic polymerization based on the initiating system ammonium bromide/trialkylaluminium was reported. Related studies have shown that the controlled anionic polymerization allows the synthesis of linear polyethers with low dispersity in a wide range of molecular weights at ambient temperature. Unfortunately, so far this controlled anionic polymerization has not been used to synthesize polymers with complex architectures. In the work reported here, controlled anionic polymerization was combined with ‘click’ chemistry for the first time to synthesize polyethers with multiple arms. Firstly, controlled anionic polymerization was employed to synthesize a linear bromine‐terminated PEG (PEG‐Br) using ethylene oxide as the monomer and tetraoctylammonium bromide/triisobutylaluminium as the initiating system at room temperature. The terminal bromine in the PEG thus synthesized was then converted into an azide group by the reaction of PEG‐Br and sodium azide. A trifunctional linking agent was also prepared by the reaction of trimethylolpropane and propiolic acid. By using ‘click’ chemistry, a three‐arm PEG was finally obtained through the reaction of the azide‐terminated PEG and the trifunctional linking agent. The chemical structure of the polymer thus synthesized was characterized using infrared spectroscopy, NMR spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry and size‐exclusion chromatography with multi‐angle laser light scattering. It was found that the synthesized polyether possesses the designed structure. Considering the wide applicability of controlled anionic polymerization and ‘click’ chemistry, their combination is a valuable way to synthesize various polyethers with multiple arms. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
A series of cationic diblock copolymers were synthesized via sequential anionic polymerization of 2‐vinylpyridine and ethylene oxide and further quaternization of the resulting diblock copolymers with dimethyl sulfate. Diblock copolymers with a degree of polymerization (DP) of the cationic block equal to 40 and DP of the poly(ethylene oxide) (PEO) block equal to 45, 210 and 450, as well as a cationic homopolymer with DP = 40 (control), were adsorbed on the surface of anionic liposomes of 40–60 nm in diameter. The liposomes were constructed with egg lecithin admixed with 0.1 mole fraction of a doubly anionic lipid, cardiolipin. The liposome–polymer complexes were characterized using electrophoretic mobility measurements, dynamic light scattering, conductivity, fluorescence and UV spectroscopy, and differential scanning calorimetry. Adsorption of the polymers causes the liposomes to aggregate; the only exception is the diblock copolymer with DP of the PEO block of 450, which shows an aggregation‐preventing effect. In all cases, the integrity of liposomes is retained upon their complexation with polymers. The diblock copolymer with a short PEO block induces clustering of anionic lipid in the outer leaflet of the membrane; this effect becomes less pronounced with increasing DP of the PEO block. The differences in behaviour of the diblock copolymers are explained in terms of copolymer cluster formation via hydrogen bonding between neighbouring PEO blocks. These observations are important for interpretation of biological effects produced by cationic polymers and selection of cationic polymers for biomedical applications. © 2017 Society of Chemical Industry  相似文献   

7.
The anionic polymerization of methyl methacrylate was performed in tetrahydrofuran (THF) at ?78°C, using sec‐butyllithium/1,1‐diphenylethylene (DPE) as the initiation system. The effects of polymerization time and initiator concentration on the branching reaction were studied. High vacuum was used to prevent contamination during the polymerization. Gel permeation chromatography (GPC) was used to characterize the branching effect qualitatively. Experimental results indicated that the monomer conversion reached more than 98% in a polymerization time of 10 min. The branching reaction occurred after high monomer conversion, resulting in a tail of high molecular weight in the GPC trace. This branching effect, observed by GPC, increased with polymerization time. Rapid termination was thus probably required immediately after all of the monomer was consumed in the preparation of a well‐defined PMMA without a high‐molecular‐weight tail in this diphenylbutylllithium/THF/?78°C system. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Poly(ethylene oxide) (PEO) star microgels with a cross‐linked polystyrene core were successfully prepared by reversible addition‐fragmentation transfer polymerization of styrene (St) and divinylbenzene (DVB) with dithiobenzoate‐terminated PEO monomethyl ether (DTB‐MPEO) as macro chain transfer agent in mixtures of ethanol and tetrahydrofuran (THF). The formation of star polymers was affected by polymerization time, solvents and St:DVB:DTB‐MPEO molar ratios. Narrow polydispersed star microgels with high molecular weight were obtained under appropriate polymerization conditions. Transmission electron micrographs suggest that PEO star polymers could form nano‐size spherical micelles in mixtures of water and THF, which further demonstrates the amphiphilic nature of the star polymers. Copyright © 2006 Society of Chemical Industry  相似文献   

9.
Sixteen poly(ethylene oxide)–polystyrene–poly(ethylene oxide) (PEO‐PS‐PEO) triblock copolymers were synthesized by anionic polymerization. They were characterized by gel permeation chromatography and proton NMR. The molecular weight of these 16 PEO‐PS‐PEO triblock copolymers ranged from 5100 to 13,300. The polystyrene (PS) block length was between 13 and 41. The PEO block length was between 41 and 106. The polydispersity index for these PEO‐PS‐PEO triblock copolymers were 1.05 ± 0.02. When using these stabilizers in the emulsion copolymerization of ethyl methacrylate and lauryl methacylate in propylene glycol, only a narrow window of stability was observed. Stable latexes were formed only when the molecular weights of the PEO blocks were within the range of 5300–7700 and the molecular weights of the PS blocks were 2000–4000. The stabilizer ability for these triblock copolymers was correlated with their molecular weight and conformation in propylene glycol. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1951–1962, 2001  相似文献   

10.
Poly(ethylene oxide)‐block‐polystyrene (PEO–PSt) block copolymers were prepared by radical polymerization of styrene in the presence of iodoacetate—terminated PEO (PEO‐I) as a macromolecular chain‐transfer agent. PEO‐I was synthesized by successively converting the OH end‐group of α‐methoxy ω‐hydroxy PEO to chloroacetate and then to the iodoacetate. The chain‐transfer constant of PEO‐I was estimated from the rate of consumption of the transfer agent versus the rate of consumption of the monomer (Ctr, PEO‐I = 0.23). Due to the involvement of degenerative transfer, styrene polymerization in the presence of PEO‐I displayed some of the characteristics of a controlled/‘living’ process, namely an increase in the molecular weight and decrease of polydispersity with monomer conversion. However, because of the slow consumption of PEO‐I due to its low chain‐transfer constant, this process was not a fully controlled one, as indicated by the polydispersity being higher than in a controlled polymerization process (1.65 versus < 1.5). The formation of PEO–PSt block copolymers was confirmed by the use of size‐exclusion chromatography and 1H NMR spectroscopy. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
The synthesis of polyacrylonitrile‐block‐poly(ethylene oxide) (PAN‐b‐PEO) diblock copolymers is conducted by sequential initiation and Ce(IV) redox polymerization using amino‐alcohol as the parent compound. In the first step, amino‐alcohol potassium with a protected amine group initiates the polymerization of ethylene oxide (EO) to yield poly(ethylene oxide) (PEO) with an amine end group (PEO‐NH2), which is used to synthesize a PAN‐b‐PEO diblock copolymer with Ce(IV) that takes place in the redox initiation system. A PAN‐poly(ethylene glycol)‐PAN (PAN‐PEG‐PAN) triblock copolymer is prepared by the same redox system consisting of ceric ions and PEG in an aqueous medium. The structure of the copolymer is characterized in detail by GPC, IR, 1H‐NMR, DSC, and X‐ray diffraction. The propagation of the PAN chain is dependent on the molecular weight and concentration of the PEO prepolymer. The crystallization of the PAN and PEO block is discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1753–1759, 2003  相似文献   

12.
Oxymethylene-linked (2-vinylpyridine-oxyethylene) multiblock copolymers were prepared by coupling telechelic α,ω-dihydroxypoly(2-vinylpyridine) (THPVP) and poly(ethylene oxide) (PEO), using dichloromethane as coupling agent and KOH as catalyst. THPVP was synthesized by polymerization of 2-vinylpyridine in tetrahydrofuran/benzene using 1-methylnaphthyllithium as anionic initiator, followed by capping with ethylene oxide and termination by methanol. The effects of charging weight ratio of PEO/THPVP, copolymerization time and molecular weight of PEO or THPVP on the copolymerization were studied. The copolymers were characterized by IR, 1H NMR, membrane osmometry, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC).  相似文献   

13.
In this study, a dendrimer-like polymer based on poly(ethylene oxide) (PEO) was synthesized through a combination of anionic ring-opening polymerization (AROP) and click reaction via arm-first method. Firstly, the polymeric arm, a linear PEO with one alkynyl group and two bromo groups, was synthesized by AROP of ethylene oxide followed by functionalization with propargyl bromide and esterified with 2-bromopropionic bromide. Second, a star PEO carrying three azide groups was synthesized though AROP of ethylene oxide used 1,1,1-tris(hydrosymethyl) ethane as initiator followed esterificated with 2-bromopropionic acid and azidation. By azide–alkyne click reactions between the azide-terminated PEO star polymer and linear PEO with functionalization alkynyl group, a three generation dendrimer-like PEO, G3-PEO-24Br, was successfully synthesized. The resulting polymers were observed to have precisely controlled molecular weights and compositions with narrow molecular weight distributions.  相似文献   

14.
A continuous‐flow reaction system was developed, allowing flow conditions of the entire system to be maintained at a predetermined constant level, which is one of the most significant factors for successful industrial application. Controlled/living anionic polymerization was selected as a model reaction since the characteristics of its polymer products, molecular weights, and molecular weight distributions are highly susceptible to changes in the relative flow rates of a monomer and initiator solutions. In flow microreactors, controlled/living anionic polymerization of styrene in tetrahydrofuran (THF)/hexane initiated by THF‐diluted n‐butyllithium (n‐BuLi) was examined. Poly(styrenes) of larger molecule sizes such as Mn > 15 000 were successfully synthesized. After continuous operation for four hours, ca. 0.5 kg of the polymer was readily produced with narrow molecular weight distribution, demonstrating the applicability of this continuous‐flow system for controlled/living anionic polymerization on considerably large scale with a view to its industrial usage in the future.  相似文献   

15.
The anionic polymerization of butadiene monomer in cyclohexane at 20°C gave polybutadiene (PB50) with a narrow molecular weight distribution. This polymer was allowed to react with 4-phenyl-1,2,4-triazoline-3,5-dione via the ‘ene’ reaction to the extent of 5, 10 and 15%. These functionalized polymers were reacted with N-phthaloyl-L -leucine acid chloride in the presence of pyridine at room temperature. These reactions lead to the replacement of N-H by an optically active group, and the resulting polymers became optically active. Some structural characterization and physical properties of these optically active polybutadienes are reported. © 1998 Society of Chemical Industry  相似文献   

16.
A series of amphiphilic graft copolymers PEO-g-PCL with different poly (ε-caprolactone) (PCL) molecular weight were successfully synthesized by a combination of anionic ring-opening polymerization (AROP) and coordination-insertion ring-opening polymerization. The linear PEO was produced by AROP of ethylene oxide (EO) and ethoxyethyl glycidyl ether initiated by 2-(2-methoxyethoxy) ethoxide potassium, and the hydroxyl groups on the backbone were deprotected after hydrolysis. The ring-opening polymerization of CL was initiated using the linear poly (ethylene oxide) (PEO) with hydroxyl group on repeated monomer as macroinitiator and Sn(Oct)2 as catalyst, then amphiphilic graft copolymers PEO-g-PCL were obtained. By changing the ratio of monomer and macroinitiator, a series of PEO-g-PCL with well-defined structure, molecular weight control, and narrow molecular weight distribution were prepared. The expected intermediates and final products were confirmed by 1H NMR and GPC analyzes. In addition, these amphiphilic graft copolymers could form spherical aggregates in aqueous solution by self-assemble, which were characterized by transmission electron microscopy, and the critical micelle concentration values of graft copolymers PEO-g-PCL were also examined in this article.  相似文献   

17.
Poly(ethylene oxide) (PEO) monochloro macroinitiators or PEO telechelic macroinitiators (Cl‐PEO‐Cl) were prepared from monohydroxyfunctional or dihydroxyfunctional PEO and 2‐chloro propionyl chloride. These macroinitiators were applied to the atom transfer radical polymerization of styrene (S). The polymerization was carried out in bulk at 140°C and catalyzed by Copper(I) chloride (CuCl) in the presence of 2,2′‐bipyridine (bipy) ligand (CuCl/bipy). The amphiphilic copolymers were either A‐B diblock or A‐B‐A triblock type, where A block is polystyrene (PS) and B block is PEO. The living nature of the polymerizations leads to block copolymers with narrow molecular weight distribution (1.072 < Mw/Mn < 1.392) for most of the macroinitiators synthesized. The macroinitiator itself and the corresponding block copolymers were characterized by FTIR, 1H NMR, and SEC analysis. By adjusting the content of the PEO blocks it was possible to prepare water‐soluble/dispersible block copolymers. The obtained block copolymers were used to control paper surface characteristics by surface treatment with small amount of chemicals. The printability of the treated paper was evaluated with polarity factors, liquid absorption measurements, and felt pen tests. The adsorption of such copolymers at the solid/liquid interface is relevant to the wetting and spreading of liquids on hydrophobic/hydrophilic surfaces. From our study, it is observed that the chain length of the hydrophilic block and the amount of hydrophobic block play an important role in modification of the paper surface. Among all of block copolymers synthesized, the PS‐b‐PEO‐b‐PS containing 10 wt % PS was found to retard water absorption considerably. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4304–4313, 2006  相似文献   

18.
A poly(ethylene oxide)‐block‐poly(dimethylamino ethyl methacrylate) block copolymer (PEO‐b‐PDMAEMA) bearing an amino moiety at the PEO chain end was synthesized by a one‐pot sequential oxyanionic polymerization of ethylene oxide (EO) and dimethylamino ethyl methacrylate (DMAEMA), followed by a coupling reaction between its PEO amino and a biotin derivative. The polymers were charac terized with 1H NMR spectroscopy and gel permeation chromatography. Activated biotin, biotin‐NHS (N‐hydroxysuccinimide), was used to synthesize biotin‐PEO‐PDMAEMA. In aqueous media, the solubility of the copolymer was temperature‐ and pH‐sensitive. The particle size of the micelle formed from functionalized block copolymers was determined by dynamic light scattering. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3552–3558, 2006  相似文献   

19.
Poly(ethylene glycol)-block-poly(butyl acrylate) synthesized by radical polymerization in a one-step procedure were characterized by gel permeation chromatography, infrared, 1H-NMR spectroscopy, and differential scanning calorimetry (DSC). The crystalline property, emulsifying property, and phase transfer catalytic effect in the Williamson reaction were studied. It was found that the crystallinity of the copolymer increased with an increase in both the content and molecular weight of poly(ethylene oxide) (PEO) sequences. DSC curves showed two distinct crystallization temperature due to the heterogeneous nucleation and homogeneous nucleation crystallization. The casting solvent significantly affected the morphology and crystallinity of the solvent cast films. Both the emulsifying volume and the phase transfer catalytic efficiency in the Williamson reaction increased with the amount and PEO content of the block copolymers used, but decreased with an increase in the molecular weight of PEO sequences. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1427–1436, 1998  相似文献   

20.
Poly(styrene-block-ethylene oxide) (PS–PEO) diblock copolymers have been synthesized with predictable block molecular weights and narrow molecular weight distributions. sec-Butyllithium-initiated polymerization of styrene was effected in benzene solution followed by ω-end-group functionalization with ethylene oxide to form the corresponding polymeric lithium alkoxide (PSOLi). Block copolymerization of ethylene oxide initiated by the unreactive PSOLi was promoted by addition of dimethylsulfoxide and either potassium t-butoxide, potassium t-amyloxide or potassium 2,6-di-t-butylphenoxide. Although the PS–PEO block copolymer product contained some poly(ethylene oxide) homopolymer, the poly(ethylene oxide) block n was in good agreement with the calculated value and the molecular weight distribution of the final block was generally narrow (w/n ≤ 1.1). The amount of PEO homopolymer was minimized using potassium 2,6-di-t-butylphenoxide rather than potassium t-alkoxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号