首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
张立华  刘全  黄志刚  朱斐 《软件学报》2023,34(10):4772-4803
逆向强化学习(inverse reinforcement learning, IRL)也称为逆向最优控制(inverse optimal control, IOC),是强化学习和模仿学习领域的一种重要研究方法,该方法通过专家样本求解奖赏函数,并根据所得奖赏函数求解最优策略,以达到模仿专家策略的目的.近年来,逆向强化学习在模仿学习领域取得了丰富的研究成果,已广泛应用于汽车导航、路径推荐和机器人最优控制等问题中.首先介绍逆向强化学习理论基础,然后从奖赏函数构建方式出发,讨论分析基于线性奖赏函数和非线性奖赏函数的逆向强化学习算法,包括最大边际逆向强化学习算法、最大熵逆向强化学习算法、最大熵深度逆向强化学习算法和生成对抗模仿学习等.随后从逆向强化学习领域的前沿研究方向进行综述,比较和分析该领域代表性算法,包括状态动作信息不完全逆向强化学习、多智能体逆向强化学习、示范样本非最优逆向强化学习和指导逆向强化学习等.最后总结分析当前存在的关键问题,并从理论和应用方面探讨未来的发展方向.  相似文献   

2.
基于生成对抗网络的模仿学习综述   总被引:1,自引:0,他引:1  
模仿学习研究如何从专家的决策数据中进行学习,以得到接近专家水准的决策模型.同样学习如何决策的强化学习往往只根据环境的评价式反馈进行学习,与之相比,模仿学习能从决策数据中获得更为直接的反馈.它可以分为行为克隆、基于逆向强化学习的模仿学习两类方法.基于逆向强化学习的模仿学习把模仿学习的过程分解成逆向强化学习和强化学习两个子过程,并反复迭代.逆向强化学习用于推导符合专家决策数据的奖赏函数,而强化学习基于该奖赏函数来学习策略.基于生成对抗网络的模仿学习方法从基于逆向强化学习的模仿学习发展而来,其中最早出现且最具代表性的是生成对抗模仿学习方法(Generative Adversarial Imitation Learning,简称GAIL).生成对抗网络由两个相对抗的神经网络构成,分别为判别器和生成器.GAIL的特点是用生成对抗网络框架求解模仿学习问题,其中,判别器的训练过程可类比奖赏函数的学习过程,生成器的训练过程可类比策略的学习过程.与传统模仿学习方法相比,GAIL具有更好的鲁棒性、表征能力和计算效率.因此,它能够处理复杂的大规模问题,并可拓展到实际应用中.然而,GAIL存在着模态崩塌、环境交互样本利用效率低等问题.最近,新的研究工作利用生成对抗网络技术和强化学习技术等分别对这些问题进行改进,并在观察机制、多智能体系统等方面对GAIL进行了拓展.本文先介绍了GAIL的主要思想及其优缺点,然后对GAIL的改进算法进行了归类、分析和对比,最后总结全文并探讨了可能的未来趋势.  相似文献   

3.
生成对抗模仿学习(generative adversarial imitation learning, GAIL)是一种基于生成对抗框架的逆向强化学习(inverse reinforcement learning, IRL)方法,旨在从专家样本中模仿专家策略. 在实际任务中,专家样本往往由多模态策略产生. 然而,现有的GAIL方法大部分假设专家样本产自于单一模态策略,导致生成对抗模仿学习只能学习到部分模态策略,即出现模式塌缩问题,这极大地限制了模仿学习方法在多模态任务中的应用. 针对模式塌缩问题,提出了基于余弦相似度的多模态模仿学习方法(multi-modal imitation learning method with cosine similarity,MCS-GAIL). 该方法引入编码器和策略组,通过编码器提取专家样本的模态特征,计算采样样本与专家样本之间特征的余弦相似度,并将其加入策略组的损失函数中,引导策略组学习对应模态的专家策略. 此外,MCS-GAIL使用新的极小极大博弈公式指导策略组以互补的方式学习不同模态策略. 在假设条件成立的情况下,通过理论分析证明了MCS-GAIL的收敛性. 为了验证方法的有效性,将MCS-GAIL用于格子世界和MuJoCo平台上,并与现有模式塌缩方法进行比较. 实验结果表明,MCS-GAIL在所有环境中均能有效学习到多个模态策略,且具有较高的准确性和稳定性.  相似文献   

4.
强化学习与生成式对抗网络结合方法研究进展   总被引:1,自引:0,他引:1  
强化学习和生成式对抗网络是近年来人工智能领域的两个热门主题,在众多领域表现非常出色。近期出现较多关于两者结合的工作与报道,将强化学习交互式学习的优点与生成式对抗网络的启发自博弈思想相互融合。对两者结合的最新进展进行了梳理、比较与实验分析。对强化学习与生成式对抗网络的理论进行了概述;从强化学习改进生成式对抗网络、生成式对抗网络改进强化学习两个研究方向进行了阐述与比较,通过实验方式分析了这些方法在自然语言、机器控制领域的应用情况;展望了可能的发展趋势。  相似文献   

5.
Autoencoder is an unsupervised learning algorithm, mainly used for data dimensionality reduction and feature extraction. Based on adversarial neural network model, autoencoder is introduced to improve the feature representation of input data. Feedforward neural network and Seq2seq model are mainly used to learn the source text features, and the random data are transformed into characteristic data as input, which greatly accelerates the speed and accuracy of training. At the same time, reinforcement learning model is used to solve the problem that the gradient of discretized data is difficult to descend. The discriminator of the model uses CNN network and cross entropy model to make the generated text innovative and novel. In the experimental part, the results of automatic evaluation and subjective evaluation show that the model is effective.  相似文献   

6.
张志远  李媛媛 《计算机应用研究》2020,37(11):3343-3346,3352
针对有监督的深度神经网络文本生成模型容易造成错误累积的问题,提出一种基于强化对抗思想训练的文本生成模型。通过将生成对抗网络鉴别器作为强化学习的奖励函数及时指导生成模型优化,尽量避免错误累积;通过在生成过程中加入目标指导特征帮助生成模型获取更多文本结构知识,提升文本生成模型真实性。在合成数据和真实数据集上的实验结果表明,该方法在文本生成任务中,较之前的文本生成模型在准确率和真实性上有了进一步的提高,验证了加入目标指导的强化对抗文本生成方法的有效性。  相似文献   

7.
如何借助计算机算法进行音乐的自动或半自动化生成工作一直是人工智能领域的一个研究热点。近年来,随着深度学习技术的深入发展,使用基于神经网络并契合乐理先验知识的方法来生成高质量、多样性智能音乐的任务也引起了研究者的重视。其中,引入生成对抗机制以提升生成效果的工作取得了一定成果,同时也具备极大的提升空间。为了更好地推进后续研究工作,对相关领域的现有成果进行全面而系统的梳理、分析、总结具有比较重要的意义。首先对机器作曲的发展过程进行了回顾,对音乐领域常用的GAN相关重要模型进行了简要归纳介绍,对引入了生成对抗训练机制的音乐生成方法进行了重点分析,最后对该领域的现状进行了总结,并进一步展望了未来的发展方向。  相似文献   

8.
针对机位再分配算法结果难以满足不同操作人员操作习惯的问题,提出一种符合实际业务人员操作习惯的机位再分配推荐算法。首先以航班特征属性和停机位的资源占用状态构建决策环境空间模型,将人工操作数据转换为多通道时空矩阵,再以卷积神经网络构建的生成对抗网络(generative adversarial network,GAN)拟合其序贯决策操作策略。仿真结果表明,可靠度在90%以上的调整动作占比最高达到84.4%。经过在三个数据集上的测试,模型对不同来源的操作数据具有较好的区分能力。对比不同扰动下的动态调整结果,算法能够得到航班—机位属性特征与原有人工操作属性特征接近的调整方案。  相似文献   

9.
近年来,机器学习技术飞速发展,并在自然语言处理、图像识别、搜索推荐等领域得到了广泛的应用.然而,现有大量开放部署的机器学习模型在模型安全与数据隐私方面面临着严峻的挑战.本文重点研究黑盒机器学习模型面临的成员推断攻击问题,即给定一条数据记录以及某个机器学习模型的黑盒预测接口,判断此条数据记录是否属于给定模型的训练数据集....  相似文献   

10.
目的 图像字幕生成是一个涉及计算机视觉和自然语言处理的热门研究领域,其目的是生成可以准确表达图片内容的句子。在已经提出的方法中,生成的句子存在描述不准确、缺乏连贯性的问题。为此,提出一种基于编码器-解码器框架和生成式对抗网络的融合训练新方法。通过对生成字幕整体和局部分别进行优化,提高生成句子的准确性和连贯性。方法 使用卷积神经网络作为编码器提取图像特征,并将得到的特征和图像对应的真实描述共同作为解码器的输入。使用长短时记忆网络作为解码器进行图像字幕生成。在字幕生成的每个时刻,分别使用真实描述和前一时刻生成的字幕作为下一时刻的输入,同时生成两组字幕。计算使用真实描述生成的字幕和真实描述本身之间的相似性,以及使用前一时刻的输出生成的字幕通过判别器得到的分数。将二者组合成一个新的融合优化函数指导生成器的训练。结果 在CUB-200数据集上,与未使用约束器的方法相比,本文方法在BLEU-4、BLEU-3、BLEI-2、BLEU-1、ROUGE-L和METEOR等6个评价指标上的得分分别提升了0.8%、1.2%、1.6%、0.9%、1.8%和1.0%。在Oxford-102数据集上,与未使用约束器的方法相比,本文方法在CIDEr、BLEU-4、BLEU-3、BLEU-2、BLEU-1、ROUGE-L和METEOR等7个评价指标上的得分分别提升了3.8%、1.5%、1.7%、1.4%、1.5%、0.5%和0.1%。在MSCOCO数据集上,本文方法在BLEU-2和BLEU-3两项评价指标上取得了最优值,分别为50.4%和36.8%。结论 本文方法将图像字幕中单词前后的使用关系纳入考虑范围,并使用约束器对字幕局部信息进行优化,有效解决了之前方法生成的字幕准确度和连贯度不高的问题,可以很好地用于图像理解和图像字幕生成。  相似文献   

11.
王星  杜伟  陈吉  陈海涛 《控制与决策》2020,35(8):1887-1894
作为样本生成的重要方法之一,生成式对抗网络(GAN)可以根据任意给定数据集中的数据分布生成样本,但它在实际的训练过程中存在生成样本纹理模糊、训练过程不稳定以及模式坍塌等问题.针对以上问题,在深度卷积生成式对抗网络(DCGAN)的基础上,结合残差网络,设计一种基于深度残差生成式对抗网络的样本生成方法RGAN.该样本生成方法利用残差网络和卷积网络分别构建生成模型和判别模型,并结合正负样本融合训练的学习优化策略进行优化训练.其中:深度残差网络可以恢复出丰富的图像纹理;正负样本融合训练的方式可以增加对抗网络的鲁棒性,有效缓解对抗网络训练不稳定和模式坍塌现象的发生.在102 Category Flower Dataset数据集上设计多个仿真实验,实验结果表明RGAN能有效提高生成样本的质量.  相似文献   

12.
行人重识别技术在实际应用中易受行人姿态变化的干扰, 由于行人姿态的变化不仅丢失部分行人信息, 而且还会引起大于身份差异的外观变化, 导致现有工作难以学到鲁棒的行人特征. 为了解决上述问题, 本文提出一种基于变分对抗与强化学习的生成式对抗网络(RL-VGAN)用于多姿态行人重识别任务. 该方法的核心思想是在不受姿态变化干扰的情况下通过外观编码器和姿态编码器将行人属性分解为外观特征和姿态特征, 用以学习鲁棒的身份视觉特征. 首先, 设计的变分生成网络利用Kullback-Leibler散度损失促进外观编码器推断与身份信息相关的连续隐变量. 其次, 为了使生成式对抗网络逐步收敛到稳定状态, 采用强化学习策略平衡变分生成网络和判别网络的性能. 此外, 针对基于姿态引导图像生成任务, 提出一种新的Inception Score损失用于规范变分生成网络生成图像质量的过程. 实验结果证明, 所提出的RL-VGAN方法在多个基准数据集上优于其他方法.  相似文献   

13.
近年来,生成对抗网络在深度学习领域掀起了一场革命,这场革命取得了一些突破,解决了生成对抗网络在训练稳定性以及生成真实性上的一些技术难题。然而,每种改进的技术大多都与标准基线进行对比,如何有效且互补地结合这些技术仍未明了。提出了一种基于正则化机制的生成对抗网络,其结合了当前许多前沿的技巧,用于稳定模型的训练和提高图像生成的真实性。实验结果表明,每种正则化技巧之间各有优劣,适当地结合能够协同提高生成对抗网络的性能。  相似文献   

14.
视听觉深度伪造检测技术研究综述   总被引:1,自引:0,他引:1  
深度学习被广泛应用于自然语言处理、计算机视觉和无人驾驶等领域,引领了新一轮的人工智能浪潮。然而,深度学习也被用于构建对国家安全、社会稳定和个人隐私等造成潜在威胁的技术,如近期在世界范围内引起广泛关注的深度伪造技术能够生成逼真的虚假图像及音视频内容。本文介绍了深度伪造的背景及深度伪造内容生成原理,概述和分析了针对不同类型伪造内容(图像、视频、音频等)的检测方法和数据集,最后展望了深度伪造检测和防御未来的研究方向和面临的挑战。  相似文献   

15.
基于最大似然估计(Maximum likelihood estimation,MLE)的语言模型(Language model,LM)数据增强方法由于存在暴露偏差问题而无法生成具有长时语义信息的采样数据.本文提出了一种基于对抗训练策略的语言模型数据增强的方法,通过一个辅助的卷积神经网络判别模型判断生成数据的真伪,从而引导递归神经网络生成模型学习真实数据的分布.语言模型的数据增强问题实质上是离散序列的生成问题.当生成模型的输出为离散值时,来自判别模型的误差无法通过反向传播算法回传到生成模型.为了解决此问题,本文将离散序列生成问题表示为强化学习问题,利用判别模型的输出作为奖励对生成模型进行优化,此外,由于判别模型只能对完整的生成序列进行评价,本文采用蒙特卡洛搜索算法对生成序列的中间状态进行评价.语音识别多候选重估实验表明,在有限文本数据条件下,随着训练数据量的增加,本文提出的方法可以进一步降低识别字错误率(Character error rate,CER),且始终优于基于MLE的数据增强方法.当训练数据达到6M词规模时,本文提出的方法使THCHS30数据集的CER相对基线系统下降5.0%,AISHELL数据集的CER相对下降7.1%.  相似文献   

16.
文档排序一直是信息检索(IR)领域的关键任务之一。受益于马尔科夫决策过程强大的建模能力,以及强化学习方法强大的求解能力,近年来基于强化学习的排序模型被提出并取得了良好效果。然而,由于候选文档中会包含大量的不相关文档,导致基于\"试错\"的强化学习方法存在效率低下的问题。为解决上述问题,该文提出了一种基于模仿学习的排序学习算法IR-DAGGER,其基于文档标注信息构建专家策略,在保证文档排序精度的同时提高了算法的学习效率。为了测试IR-DAGGER的性能,该文基于面向相关性排序任务的OHSUMED数据集和面向多样化排序的TREC数据集进行了实验,实验结果表明IR-DAGGER在上述两个数据集上均提升了文档排序的精度和效率。  相似文献   

17.
模仿学习是强化学习与监督学习的结合,目标是通过观察专家演示,学习专家策略,从而加速强化学习。通过引入任务相关的额外信息,模仿学习相较于强化学习,可以更快地实现策略优化,为缓解低样本效率问题提供了解决方案。模仿学习已成为解决强化学习问题的一种流行框架,涌现出多种提高学习性能的算法和技术。通过与图形图像学的最新研究成果相结合,模仿学习已经在游戏人工智能(artificial intelligence,AI)、机器人控制和自动驾驶等领域发挥了重要作用。本文围绕模仿学习的年度发展,从行为克隆、逆强化学习、对抗式模仿学习、基于观察量的模仿学习和跨领域模仿学习等多个角度进行深入探讨,介绍了模仿学习在实际应用上的最新情况,比较了国内外研究现状,并展望了该领域未来的发展方向。旨在为研究人员和从业人员提供模仿学习的最新进展,从而为开展工作提供参考与便利。  相似文献   

18.
深度学习图像数据增广方法研究综述   总被引:1,自引:0,他引:1       下载免费PDF全文
数据作为深度学习的驱动力,对于模型的训练至关重要。充足的训练数据不仅可以缓解模型在训练时的过拟合问题,而且可以进一步扩大参数搜索空间,帮助模型进一步朝着全局最优解优化。然而,在许多领域或任务中,获取到充足训练样本的难度和代价非常高。因此,数据增广成为一种常用的增加训练样本的手段。本文对目前深度学习中的图像数据增广方法进行研究综述,梳理了目前深度学习领域为缓解模型过拟合问题而提出的各类数据增广方法,按照方法本质原理的不同,将其分为单数据变形、多数据混合、学习数据分布和学习增广策略等4类方法,并以图像数据为主要研究对象,对各类算法进一步按照核心思想进行细分,并对方法的原理、适用场景和优缺点进行比较和分析,帮助研究者根据数据的特点选用合适的数据增广方法,为后续国内外研究者应用和发展研究数据增广方法提供基础。针对图像的数据增广方法,单数据变形方法主要可以分为几何变换、色域变换、清晰度变换、噪声注入和局部擦除等5种;多数据混合可按照图像维度的混合和特征空间下的混合进行划分;学习数据分布的方法主要基于生成对抗网络和图像风格迁移的应用进行划分;学习增广策略的典型方法则可以按照基于元学习和基于强化学习进行分类。目前,数据增广已然成为推进深度学习在各领域应用的一项重要技术,可以很有效地缓解训练数据不足带来的深度学习模型过拟合的问题,进一步提高模型的精度。在实际应用中可根据数据和任务的特点选择和组合最合适的方法,形成一套有效的数据增广方案,进而为深度学习方法的应用提供更强的动力。在未来,根据数据和任务基于强化学习探索最优的组合策略,基于元学习自适应地学习最优数据变形和混合方式,基于生成对抗网络进一步拟合真实数据分布以采样高质量的未知数据,基于风格迁移探索多模态数据互相转换的应用,这些研究方向十分值得探索并且具有广阔的发展前景。  相似文献   

19.
生成对抗网络(GAN)能够生成逼真的图像,已成为生成模型中的一个研究热点。针对生成对抗网络无法有效提取图像局部与全局特征间依赖关系以及各类别间的依赖关系,提出一种用于生成对抗网络的孪生注意力模型(TAGAN)。以孪生注意力机制为驱动,通过模拟局部与全局特征间的依赖关系以及各类别间依赖关系,对真实自然图像建模,创建逼真的非真实图像。孪生注意力机制包含特征注意力模型和通道注意力模型,特征注意力模型通过有选择地聚合特征,学习相似特征间的关联性,通道注意力模型通过整合各通道维度的相关特征,学习各通道的内部依赖关系。在MNIST、CIFAR10和CelebA64数据集上验证了所提出模型的有效性。  相似文献   

20.
融合对抗学习的因果关系抽取   总被引:2,自引:0,他引:2       下载免费PDF全文
因果关系抽取在事件预测、情景生成、问答以及文本蕴涵等任务上都有重要的应用价值.但多数现有的因果关系抽取方法都需要人工定义模式和约束,且严重依赖知识库.为此,本文利用生成式对抗网络(Generative adversarial networks,GAN)的对抗学习特性,将带注意力机制的双向门控循环单元神经网络(Bidirectional gated recurrent units networks,BGRU)与对抗学习相融合,通过重定义生成模型和判别模型,基本的因果关系抽取网络能够与判别网络形成对抗,进而从因果关系解释信息中获得高区分度的特征.实验结果表明,与当前用于因果关系抽取的方法相比较,该方法表现出更优的抽取效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号