首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Parallel integer sorting and simulation amongst CRCW models   总被引:1,自引:0,他引:1  
 In this paper a general technique for reducing processors in simulation without any increase in time is described. This results in an O(√log n) time algorithm for simulating one step of PRIORITY on TOLERANT with processor-time product of O(n log log n); the same as that for simulating PRIORITY on ARBITRARY. This is used to obtain an O(log n/log log n+√log n (log log m− log log n)) time algorithm for sorting n integers from the set {0,…, m−1}, mn, with a processor-time product of O(n log log m log log n) on a TOLERANT CRCW PRAM. New upper and lower bounds for ordered chaining problem on an allocated COMMON CRCW model are also obtained. The algorithm for ordered chaining takes O(log n/log log n) time on an allocated PRAM of size n. It is shown that this result is best possible (upto a constant multiplicative factor) by obtaining a lower bound of Ω(r log n/(log r+log log n)) for finding the first (leftmost one) live processor on an allocated-COMMON PRAM of size n of r-slow virtual processors (one processor simulates r processors of allocated PRAM). As a result, for ordered chaining problem, “processor-time product” has to be at least Ω(n log n/log log n) for any poly-logarithmic time algorithm. Algorithm for ordered-chaining problem results in an O(log N/log log N) time algorithm for (stable) sorting of n integers from the set {0,…, m−1} with n-processors on a COMMON CRCW PRAM; here N=max(n, m). In particular if, m=n O(1) , then sorting takes Θ(log n/log log n) time on both TOLERANT and COMMON CRCW PRAMs. Processor-time product for TOLERANT is O(n(log log n)2). Algorithm for COMMON uses n processors. Received August 13, 1992/June 30, 1995  相似文献   

2.
Consider an n-vertex planar graph G. The depth of an embedding Γ of G is the maximum distance of its internal faces from the external one. Several researchers pointed out that the quality of a planar embedding can be measured in terms of its depth. We present an O(n 4)-time algorithm for computing an embedding of G with minimum depth. This bound improves on the best previous bound by an O(nlog n) factor. As a side effect, our algorithm improves the bounds of several algorithms that require the computation of a minimum-depth embedding.  相似文献   

3.
Y. Nekrich 《Algorithmica》2007,49(2):94-108
In this paper we present new space efficient dynamic data structures for orthogonal range reporting. The described data structures support planar range reporting queries in time O(log n+klog log (4n/(k+1))) and space O(nlog log n), or in time O(log n+k) and space O(nlog  ε n) for any ε>0. Both data structures can be constructed in O(nlog n) time and support insert and delete operations in amortized time O(log 2 n) and O(log nlog log n) respectively. These results match the corresponding upper space bounds of Chazelle (SIAM J. Comput. 17, 427–462, 1988) for the static case. We also present a dynamic data structure for d-dimensional range reporting with search time O(log  d−1 n+k), update time O(log  d n), and space O(nlog  d−2+ε n) for any ε>0. The model of computation used in our paper is a unit cost RAM with word size log n. A preliminary version of this paper appeared in the Proceedings of the 21st Annual ACM Symposium on Computational Geometry 2005. Work partially supported by IST grant 14036 (RAND-APX).  相似文献   

4.
We design compact and responsive kinetic data structures for detecting collisions between n convex fat objects in 3-dimensional space that can have arbitrary sizes. Our main results are:
(i)  If the objects are 3-dimensional balls that roll on a plane, then we can detect collisions with a KDS of size O(nlog n) that can handle events in O(log 2 n) time. This structure processes O(n 2) events in the worst case, assuming that the objects follow constant-degree algebraic trajectories.
(ii)  If the objects are convex fat 3-dimensional objects of constant complexity that are free-flying in ℝ3, then we can detect collisions with a KDS of O(nlog 6 n) size that can handle events in O(log 7 n) time. This structure processes O(n 2) events in the worst case, assuming that the objects follow constant-degree algebraic trajectories. If the objects have similar sizes then the size of the KDS becomes O(n) and events can be handled in O(log n) time.
M.A. and S.-H.P. were supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 612.065.307. M.d.B. was supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 639.023.301.  相似文献   

5.
A caterpillar is a tree in which all vertices of degree three or more lie on one path, called the backbone. We present a polynomial time algorithm that produces a linear arrangement of the vertices of a caterpillar with bandwidth at most O(log n/log log n) times the local density of the caterpillar, where the local density is a well known lower bound on the bandwidth. This result is best possible in the sense that there are caterpillars whose bandwidth is larger than their local density by a factor of Ω(log n/log log n). The previous best approximation ratio for the bandwidth of caterpillars was O(log n). We show that any further improvement in the approximation ratio would require using linear arrangements that do not respect the order of the vertices of the backbone. We also show how to obtain a (1+ε) approximation for the bandwidth of caterpillars in time . This result generalizes to trees, planar graphs, and any family of graphs with treewidth .  相似文献   

6.
We provide the first sparse covers and probabilistic partitions for graphs excluding a fixed minor that have strong diameter bounds; i.e. each set of the cover/partition has a small diameter as an induced sub-graph. Using these results we provide improved distributed name-independent routing schemes. Specifically, given a graph excluding a minor on r vertices and a parameter ρ>0 we obtain the following results: (1) a polynomial algorithm that constructs a set of clusters such that each cluster has a strong-diameter of O(r 2 ρ) and each vertex belongs to 2 O(r) r! clusters; (2) a name-independent routing scheme with a stretch of O(r 2), headers of O(log n+rlog r) bits, and tables of size 2 O(r) r! log 4 n/log log n bits; (3) a randomized algorithm that partitions the graph such that each cluster has strong-diameter O(r6 r ρ) and the probability an edge (u,v) is cut is O(rd(u,v)/ρ).  相似文献   

7.
In this paper we give upper and lower bounds on the number of Steiner points required to construct a strictly convex quadrilateral mesh for a planar point set. In particular, we show that 3\lfloorn/2\rfloor internal Steiner points are always sufficient for a convex quadrilateral mesh of n points in the plane. Furthermore, for any given n\geq 4, there are point sets for which \lceil(n–3)/2\rceil–1 Steiner points are necessary for a convex quadrilateral mesh.  相似文献   

8.
We revisit the problem of indexing a string S[1..n] to support finding all substrings in S that match a given pattern P[1..m] with at most k errors. Previous solutions either require an index of size exponential in k or need Ω(m k ) time for searching. Motivated by the indexing of DNA, we investigate space efficient indexes that occupy only O(n) space. For k=1, we give an index to support matching in O(m+occ+log nlog log n) time. The previously best solution achieving this time complexity requires an index of O(nlog n) space. This new index can also be used to improve existing indexes for k≥2 errors. Among others, it can support 2-error matching in O(mlog nlog log n+occ) time, and k-error matching, for any k>2, in O(m k−1log nlog log n+occ) time.  相似文献   

9.
Largest and Smallest Convex Hulls for Imprecise Points   总被引:2,自引:0,他引:2  
Assume that a set of imprecise points is given, where each point is specified by a region in which the point may lie. We study the problem of computing the smallest and largest possible convex hulls, measured by length and by area. Generally we assume the imprecision region to be a square, but we discuss the case where it is a segment or circle as well. We give polynomial time algorithms for several variants of this problem, ranging in running time from O(nlog n) to O(n 13), and prove NP-hardness for some other variants.  相似文献   

10.
Yijie Han 《Algorithmica》2008,51(4):428-434
We present an O(n 3(log log n/log n)5/4) time algorithm for all pairs shortest paths. This algorithm improves on the best previous result of O(n 3/log n) time. Research supported in part by NSF grant 0310245.  相似文献   

11.
We consider the problem of fitting a step function to a set of points. More precisely, given an integer k and a set P of n points in the plane, our goal is to find a step function f with k steps that minimizes the maximum vertical distance between f and all the points in P. We first give an optimal Θ(nlog n) algorithm for the general case. In the special case where the points in P are given in sorted order according to their x-coordinates, we give an optimal Θ(n) time algorithm. Then, we show how to solve the weighted version of this problem in time O(nlog 4 n). Finally, we give an O(nh 2log n) algorithm for the case where h outliers are allowed. The running time of all our algorithms is independent of k.  相似文献   

12.
The two dimensional range minimum query problem is to preprocess a static m by n matrix (two dimensional array) A of size N=mn, such that subsequent queries, asking for the position of the minimum element in a rectangular range within A, can be answered efficiently. We study the trade-off between the space and query time of the problem. We show that every algorithm enabled to access A during the query and using a data structure of size O(N/c) bits requires Ω(c) query time, for any c where 1≤cN. This lower bound holds for arrays of any dimension. In particular, for the one dimensional version of the problem, the lower bound is tight up to a constant factor. In two dimensions, we complement the lower bound with an indexing data structure of size O(N/c) bits which can be preprocessed in O(N) time to support O(clog 2 c) query time. For c=O(1), this is the first O(1) query time algorithm using a data structure of optimal size O(N) bits. For the case where queries can not probe A, we give a data structure of size O(N⋅min {m,log n}) bits with O(1) query time, assuming mn. This leaves a gap to the space lower bound of Ω(Nlog m) bits for this version of the problem.  相似文献   

13.
We investigate the effects of precision on the efficiency of various local search algorithms on 1-D unimodal functions. We present a (1+1)-EA with adaptive step size which finds the optimum in O(log n) steps, where n is the number of points used. We then consider binary (base-2) and reflected Gray code representations with single bit mutations. The standard binary method does not guarantee locating the optimum, whereas using the reflected Gray code does so in Θ((log n)2) steps. A(1+1)-EA with a fixed mutation probability distribution is then presented which also runs in O((log n)2). Moreover, a recent result shows that this is optimal (up to some constant scaling factor), in that there exist unimodal functions for which a lower bound of Ω((log n)2) holds regardless of the choice of mutation distribution. For continuous multimodal functions, the algorithm also locates the global optimum in O((log n)2). Finally, we show that it is not possible for a black box algorithm to efficiently optimise unimodal functions for two or more dimensions (in terms of the precision used).  相似文献   

14.
In this paper, we unify several graph partitioning problems including multicut, multiway cut, and k-cut, into a single problem. The input to the requirement cut problem is an undirected edge-weighted graph G=(V,E), and g groups of vertices X 1,…,X g V, with each group X i having a requirement r i between 0 and |X i |. The goal is to find a minimum cost set of edges whose removal separates each group X i into at least r i disconnected components. We give an O(log n⋅log (gR)) approximation algorithm for the requirement cut problem, where n is the total number of vertices, g is the number of groups, and R is the maximum requirement. We also show that the integrality gap of a natural LP relaxation for this problem is bounded by O(log n⋅log (gR)). On trees, we obtain an improved guarantee of O(log (gR)). There is an Ω(log g) hardness of approximation for the requirement cut problem, even on trees.  相似文献   

15.
The diameter of a set P of n points in ℝ d is the maximum Euclidean distance between any two points in P. If P is the vertex set of a 3-dimensional convex polytope, and if the combinatorial structure of this polytope is given, we prove that, in the worst case, deciding whether the diameter of P is smaller than 1 requires Ω(nlog n) time in the algebraic computation tree model. It shows that the O(nlog n) time algorithm of Ramos for computing the diameter of a point set in ℝ3 is optimal for computing the diameter of a 3-polytope. We also give a linear time reduction from Hopcroft’s problem of finding an incidence between points and lines in ℝ2 to the diameter problem for a point set in ℝ7.  相似文献   

16.
The sparse spliced alignment problem consists of finding a chain of zero or more exons from O(n) prescribed candidate exons of a DNA sequence of length O(n) that is most similar to a known related gene sequence of length n. This study improves the running time of the fastest known algorithm for this problem to date, which executes in O(n 2.25) time, or very recently, in O(n 2log 2 n) time, by proposing an O(n 2log n)-time algorithm.  相似文献   

17.
Given n points, called terminals, in the plane ℝ2 and a positive integer k, the bottleneck Steiner tree problem is to find k Steiner points from ℝ2 and a spanning tree on the n+k points that minimizes its longest edge length. Edge length is measured by an underlying distance function on ℝ2, usually, the Euclidean or the L 1 metric. This problem is known to be NP-hard. In this paper, we study this problem in the L p metric for any 1≤p≤∞, and aim to find an exact algorithm which is efficient for small fixed k. We present the first fixed-parameter tractable algorithm running in f(k)⋅nlog 2 n time for the L 1 and the L metrics, and the first exact algorithm for the L p metric for any fixed rational p with 1<p<∞ whose time complexity is f(k)⋅(n k +nlog n), where f(k) is a function dependent only on k. Note that prior to this paper there was no known exact algorithm even for the L 2 metric.  相似文献   

18.
Power optimization is a central issue in wireless network design. Given a graph with costs on the edges, the power of a node is the maximum cost of an edge incident to it, and the power of a graph is the sum of the powers of its nodes. Motivated by applications in wireless networks, we consider several fundamental undirected network design problems under the power minimization criteria. Given a graph G=(V,E)\mathcal{G}=(V,\mathcal{E}) with edge costs {c(e):e∈ℰ} and degree requirements {r(v):vV}, the Minimum-Power Edge-Multi-Cover\textsf{Minimum-Power Edge-Multi-Cover} (MPEMC\textsf{MPEMC} ) problem is to find a minimum-power subgraph G of G\mathcal{G} so that the degree of every node v in G is at least r(v). We give an O(log n)-approximation algorithms for MPEMC\textsf{MPEMC} , improving the previous ratio O(log 4 n). This is used to derive an O(log n+α)-approximation algorithm for the undirected $\textsf{Minimum-Power $\textsf{Minimum-Power ($\textsf{MP$\textsf{MP ) problem, where α is the best known ratio for the min-cost variant of the problem. Currently, _boxclosen-k)\alpha=O(\log k\cdot \log\frac{n}{n-k}) which is O(log k) unless k=no(n), and is O(log 2 k)=O(log 2 n) for k=no(n). Our result shows that the min-power and the min-cost versions of the $\textsf{$\textsf{ problem are equivalent with respect to approximation, unless the min-cost variant admits an o(log n)-approximation, which seems to be out of reach at the moment.  相似文献   

19.
Mesh of trees (MOT) is well known for its small diameter, high bisection width, simple decomposability and area universality. On the other hand, OTIS (Optical Transpose Interconnection System) provides an efficient optoelectronic model for massively parallel processing system. In this paper, we present OTIS-MOT as a competent candidate for a two-tier architecture that can take the advantages of both the OTIS and the MOT. We show that an n4-n^{4}_{-} processor OTIS-MOT has diameter 8log n +1 (The base of the logarithm is assumed to be 2 throughout this paper.) and fault diameter 8log n+2 under single node failure. We establish other topological properties such as bisection width, multiple paths and the modularity. We show that many communication as well as application algorithms can run on this network in comparable time or even faster than other similar tree-based two-tier architectures. The communication algorithms including row/column-group broadcast and one-to-all broadcast are shown to require O(log n) time, multicast in O(n 2log n) time and the bit-reverse permutation in O(n) time. Many parallel algorithms for various problems such as finding polynomial zeros, sales forecasting, matrix-vector multiplication and the DFT computation are proposed to map in O(log n) time. Sorting and prefix computation are also shown to run in O(log n) time.  相似文献   

20.
Degree-Optimal Routing for P2P Systems   总被引:1,自引:0,他引:1  
We define a family of Distributed Hash Table systems whose aim is to combine the routing efficiency of randomized networks—e.g. optimal average path length O(log 2 n/δlog δ) with δ degree—with the programmability and startup efficiency of a uniform overlay—that is, a deterministic system in which the overlay network is transitive and greedy routing is optimal. It is known that Ω(log n) is a lower bound on the average path length for uniform overlays with O(log n) degree (Xu et al., IEEE J. Sel. Areas Commun. 22(1), 151–163, 2004). Our work is inspired by neighbor-of-neighbor (NoN) routing, a recently introduced variation of greedy routing that allows us to achieve optimal average path length in randomized networks. The advantage of our proposal is that of allowing the NoN technique to be implemented without adding any overhead to the corresponding deterministic network. We propose a family of networks parameterized with a positive integer c which measures the amount of randomness that is used. By varying the value c, the system goes from the deterministic case (c=1) to an “almost uniform” system. Increasing c to relatively low values allows for routing with asymptotically optimal average path length while retaining most of the advantages of a uniform system, such as easy programmability and quick bootstrap of the nodes entering the system. We also provide a matching lower bound for the average path length of the routing schemes for any c. This work was partially supported by the Italian FIRB project “WEB-MINDS” (Wide-scalE, Broadband MIddleware for Network Distributed Services), .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号