首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 875 毫秒
1.
用差示扫描量热法(DSC)研究了六硝基六氮杂异伍兹烷(HINW,CL–20)、黑索今(RDX)及CL–20/RDX混合体系的热分解行为,分别用Kissinger法和Ozawa法计算了热分解动力学参数。结果表明:RDX的存在,降低了CL–20的分解峰温;2种动力学计算结果相近,均显示出RDX的存在降低了CL–20表观活化能。  相似文献   

2.
采用高压差示扫描量热法(PDSC)、热重分析法(TGA)和快速扫描傅里叶变换红外光谱法(FT-IR),研究了四硝基并哌嗪(TNAD)的热分解机理,并采用FT-IR技术和TG/MS(质谱)联用分析了TNAD热分解过程的凝聚相变化,确认其热分解机理与化学反应过程。研究表明,在1MPa压力下TNAD的分解过程较简单,无熔融吸热峰出现,属固相分解,主要放热峰出现在212.5~251.7℃。NTO-Pb、TNAD/φ-Pb、β-Cu和AD-Cu等铅铜盐对TNAD的催化作用明显,都能使其热分解反应提前,相比之下,β-Cu和NTO-Pb催化效果更好。炭黑、Al_2O_3、Al等添加剂对TNAD起到稀释作用,缓和了分解放热过程,可起到稳定燃烧的作用。TNAD热分解主要有2个历程,分解过程中产生的主要气体产物为HCHO、NO、HCN和-C2_H_2、-CHO等碎片离子。  相似文献   

3.
采用DSC–TG(差热–热重)联用的分析方法,分别研究了燃速催化剂FBC(铁盐)和LBC(铅盐)对PET(环氧乙烷和四氢呋喃共聚醚)/N–100(多异氰酸酯)/TDI(甲苯二异氰酸酯)和GAP(聚叠氮缩水甘油醚)/N–100/TDI聚醚黏合剂体系的固化反应的影响,获得了2种黏合剂体系的固化反应动力学参数的变化。结果表明:PET/N–100/TDI与GAP/N–100/TDI体系反应更接近于一级反应,对于PET/N–100/TDI体系,采用FBC作燃速催化剂,其固化反应活化能更低,反应速率更快;而对于GAP/N–100/TDI体系,采用LBC作燃速催化剂,其固化反应活化能低很多,反应速率更快,催化效果更好。此外,由Kissinger方法和Ozawa方法计算的固化反应活化能比较接近,说明本研究得到的固化反应动力学参数是正确可靠的,从而为PET/N–100/TDI和GAP/N–100/TDI体系固化反应进程的控制提供了理论依据。  相似文献   

4.
采用TG(热重)-DSC(差热)、扫描电镜、红外光谱、原位XRD(X射线衍射)、激光粒度分析等测试手段对1,1’-二羟基-5,5’-联四唑二羟胺盐(TKX-50)在推进剂使用工况下的热稳定性能进行了研究。结果表明,TKX-50的热分解分两步,且分解初期质量线有很大波动,第一阶段分解的活化能为143.6 kJ/mol,峰温为232.17℃,第二阶段分解的峰温为250.47℃,TKX-50在70℃/空气条件下储存30 d,质量、形状尺寸、平均粒径和晶型均未发生明显变化,热稳定性较好。  相似文献   

5.
用DSC—TG—FTIR(热红)联用研究了RDX/AP,HMx/AP,RDx/HMx和RDX/HMX/AP混合体系的热分解,测定和比较了它们的热分析特征量和分解气相产物。结果表明,AP与RDX和HMX之间存在强烈的相互作用,尤其是与后者的作用更强烈。在AP(不含碳)分解的温度区间,混合体系的分解也出现CO、CO2和CH2O等碳氧化物,说明体系中RDX和HMX分解的部分产物或残渣与AP同时分解。  相似文献   

6.
采用SEM(扫描电镜)、XPS(X射线光电子能谱)等表征了双(二羰基环戊二烯铁)(简称Fe1)的微观形貌和Fe元素的价态,采用摩擦感度、静电感度和冲击感度测试了Fe1与推进剂相关组分HTPB(端羟基聚丁二烯)、AP(高氯酸铵)、HMX(奥克托今)的安全性能,采用DSC-TG(差热–热重)研究了AP/Fe1及HTPB/Al/AP/HMX/Fe1推进剂的催化热分解性能。结果表明:Fe1的pH为5.79,密度为1.76g/cm~3,其中Fe为零价;Fe1与推进剂相关组分HTPB、AP、HMX的安全性能良好;Fe1催化AP的热分解,AP的转晶峰温提前了2℃,低温分解峰和高温分解峰分别提前了6℃和54℃;在HTPB/Al/AP/HMX推进剂中添加质量分数为5%的Fe1,AP的高温分解峰提前48.1℃;Fe1具有大幅提高HTPB推进剂燃速的潜力。  相似文献   

7.
向二硝酰胺铵(ADN)样品中加入3种添加剂3-氨基-2-萘酚、尿素和乌洛托品(HMT),制备了球形化改性ADN及ADN/添加剂混合物;利用差示扫描量热法(DSC)和热重(TG)分析法研究了3种添加剂对ADN热分解行为的影响;采用Kissinger法和Ozawa法计算了其活化能;利用等温方法(TG法和TAM法)进一步研究了纯ADN和ADN/HMT在等温条件下的热分解行为。结果表明,3种添加剂均提高了ADN的起始分解温度和峰温;当添加HMT时,热分解起始温度和峰温提高最为明显,起始温度分别提高7.3~10.0℃(DSC)和6.3~7.1℃(TG);分解峰温提高7.0~9.0℃(DSC);Kissinger法和Ozawa法计算得到ADN/HMT热分解的活化能分别为155.6和165.2kJ/mol;添加HMT后,ADN的初始分解速率由3.0%/h降至1.6%/h,ADN的放热峰由单峰变为肩峰,且出峰位置明显延后,表明HMT能明显抑制ADN的热失重和放热行为。  相似文献   

8.
为探究石墨双炔(GDY)对RDX热分解性能的影响,采用液相法制备出GDY,对其进行扫描电镜(SEM)、透射电镜(TEM)、X光电子能谱(XPS)、热重(TG)、红外(IR)表征;采用物理混合法将不同质量分数的GDY与环三亚甲基三硝胺(RDX)复合,用差示扫描量热仪(DSC)测试其热行为,并用Kissinger和Ozawa法进行动力学计算;用热重/红外/质谱联用仪(TG/IR/MS)研究GDY质量分数为5%的复合样品的热分解机理;根据GJB772A-97,采用DSC法进行相容性分析;从热分解峰温和活化能角度,比较了不同炭材料对RDX热分解的影响。结果表明,升温速率10℃/min、GDY质量分数为5%时,RDX热分解峰温升高2.97℃,活化能降低10.75kJ/mol; TG/IR/MS研究表明,加入GDY后,主要气体产物种类没有发生改变,但是CH_2O和N_2O气体产物在较低的温度下即会产生,表明GDY的加入能够促进C—N键的断裂,从而促进RDX的热分解;相容性测试表明GDY与RDX不相容;相比纯RDX,石墨烯和多壁碳纳米管(CNT)使RDX的热分解活化能分别降低59.76kJ/mol和25.6kJ/mol,降低程度高于GDY,而富勒烯(C_(60))则使RDX的活化能升高37.17kJ/mol。  相似文献   

9.
采用热重–差热分析(TG–DSC)对聚对苯二甲酰对苯二胺(PPTA)纤维、聚对亚苯基苯并双口恶唑(PBO)纤维和聚苯硫醚(PPS)纤维等耐高温有机纤维在氮气和空气2种不同气氛条件下的热分解行为进行研究,同时采用扫描电镜(SEM)观察热处理前后3种纤维的微观形貌,并对3种耐高温纤维的热稳定性进行对比。结果表明:在氮气和空气条件下,纤维表现出不一样的分解行为,在空气中分解比在氮气中剧烈得多;PBO纤维的热稳定性明显高于PPTA纤维和PPS纤维,PPS纤维热稳定性最差。  相似文献   

10.
采用热重分析(TG)和热裂解气质联用(Py-GC/MS)方法研究了聚酰胺66纤维的热稳定性和热裂解机制。结果表明:聚酰胺66纤维在氮气气氛中的热分解过程为一步反应,热分解活化能为186.4 kJ/mol,470℃以上可完全分解,热稳定性良好。聚酰胺66纤维的热裂解产物主要是环戊酮,峰面积百分比达24.27%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号